A

Abel, M. S., see Garrett, K. M., 652 Aduhya, T., see Quik, M., 90

Afar, R., see Quik, M., 90

Ahluwalia, G. S., see Masood, R., 590

Andries, M. J., Lucier, G. W., Goldstein, J., and Thompson, C. L. Involvement of cytochrome P-450c in α -naphthoflavone metabolism by rat liver microsomes, 990

Arbonés, L., Picatoste, F., and Garcia, A. Histamine stimulates glycogen breakdown and increases ⁴⁵Ca₂⁺ permeability in rat astrocytes in primary culture, 921

Archer, S., see Bidlack, J. M., 50

Armah, B. I., see Wang, G., 17, 144

Arnold, S. T., see Politi, P. M., 790

Aronin, N., see Madras, B. K., 833

Ashmun, R., see Fridland, A., 665

Ashton, R. A., see Garrett, K. M., 652

Ayer, D. E., see Im, W. B., 429

Aylwin, M., see White, M. M., 720

В

Báez, A., Riou, J. F., Le Pecq, J. B., and Riou, G. Interaction of DNA intercalator 3-nitrobenzothiazolo (3,2-a)quinolinium with DNA topoisomerases: A possible-mechanism for its biological activity, 377

Baindur, N., see Madras, B. K., 833

Bakthavachalam, V., see Madras, B. K., 833

Balzarini, J., Bernaerts, R., Verbruggen, A., and De Clercq, E. Role of the incorporation of (E)-5-(2-iodovinyl)-2'-deoxyuridine and its carbocyclic analogue into DNA of herpes simplex virus type 1infected cells in the antiviral effects of these compounds, 402

Balzarini, J., De Clercq, E., Baumgartner, H., Bodenteich, M., and Griengl, H. Carbocyclic 5-iodo-2'-deoxyuridine (C-IDU) and carbocylic (E)-5-(2-bromovinyl)-2'-deoxyuridine (C-BVDU) as unique examples of chiral molecules where the two enantiomeric forms are biologically active: Interaction of the (+)-and (-)-enantiomers of C-IDU and C-BVDU with the thymidine kinase of heroes simplex virus type I. 395

Balzarini, J., see Hao, Z., 157

Banet, D. E, see Sherratt, A. J., 198

Barber, R., see Prashad, N., 937

Barbour, K. W., Berger, S. H., and Berger, F. G. Single amnio acid substitution defines a naturally occurring genetic variant of human thymidylate synthase, 515

Baron, J., see Voigt, J. M., 182

Barrington, W. W., see Ramkumar, V., 149

Bast, A., see Haenen, G. R. M. M., 412

Baudry, M., see Massicotte, G., 278

Baumgartner, H., see Balzarini, J., 395

Beauwens, R., see Van Sande, J., 583

Beer, B., see Garrett, K. M., 652

Bell, J. D., Biltonen, R. L., and Brunton, L. L. Non-steady state kinetic analysis of the regulation of adenylate, cyclase by GTP-binding proteins, 535

Benz, C. C., Keniry, M. A., Ford, J. M., Townsend, A. J., Cox, F. W., Palayoor, S., Matlin, S. A., Hait, W. N., and Cowan, K. H. Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers, 840

Berger, F. G., see Barbour, K. W., 515

Berger, S. H., see Barbour, K. W., 515

Berhane, K., and Mannervik, B. Inactivation of the genotoxic aldehyde acrolein by human glutathione transferases of classes Alpha, Mu, and Pi, 251 Berkovich, A., McPhie, P., Campagnone, M., Guidotti, A., and Hensley, P. A natural processing product of rat diazepam binding inhibitor, triakontatetraneuropeptide (diazepam binding inhibitor 17-50) contains an α -helix, which allows discrimination between benzo-diazepine binding site subtypes, 164

Bernaerts, R., see Balzarini, J., 402

Bernaerts, R., see De Clercq, E., 658

Biaggioni, I., see Paul, S., 870

Bidlack, J. M., Frey, D. K., Kaplan, R. A., Seyed-Mozaffari, A., and Archer, S. Affinity labeling of μ opioid receptors by sulfhydryl alkylating derivatives of morphine and morphinene, 50

Biesterfeldt, J. P., see Monahan, J. B., 780

Biltonen, R. L., see Bell, J. D., 535

Binaschi, M., see De Isabella, P., 11

Blakeman, D. P., see Im, W. B., 429

Blakley, R. L., Harwood, F. C., and Huff, K. D. Cytostatic effects of 2',3'-dideoxyribonucleosides on transformed human hemopoietic cell lines, 328

Blume, A. J., see Garrett, K. M., 652

Bockaert, J., Sebben, M., and Dumuis, A. Pharmacological characterization of 5-hydroxytryptamine₄ (5-HT₄) receptors positively coupled to adenylate cyclase in adult guinea pig hippocampal membranes: Effect of substituted benzamide derivatives, 408

Bodenteich, M., see Balzarini, J., 395

Boeynaems, J. M., see Demolle, D., 827

Bogucki, B. D., see Rettie, A. E., 643

Bohmaker, K., see Meller, E., 231

Border, S., see Masood, R., 590

Borislow, S., see He, H.-T., 614 Bös, M., see Cesura, A. M., 358

Boutherin-Falson, O., see Demolle, D., 827

Bowyer, J. F., see Houchi, H., 104

Brakeman, J. C., see Van Sande, J., 583

Brann, M. R., see Stormann, T. M., 1 Brennan, S. O., see Kragh-Hansen, U., 238

Brodersen, R., Jørgensen, N. A., Vorum, H., and Krukow, N. Valproate and palmitate binding to human serum albumin: An hypothesis on obesity, 704

Bruno, V., see Nicoletti, F., 689

Brunton, L. L. see Bell, J. D., 535

Brush, K., see Chu, A., 735

Buller, A. L., and White, M. M. Functional acetylcholine receptors expressed in *Xenopus* oocytes after injection of *Torpedo* β , γ , and δ subunit RNAs are a consequence of endogenous oocyte gene expression, 423

Burch, R. M., see Mahan, L. C., 785

Bureau, M., and Olsen, R. W. Multiple distinct subunites of the γ -aminobutyric acid-A receptor protein show different ligand-binding affinties, 497

Burke, J. P., see Voigt, J. M., 182

Burnett, D. M., Daniell, L. C., and Zahniser, N. R. Decreased efficacy of inositol 1,4,5-trisphosphate to elicit calcium mobilization from cerebrocortical microsomes of aged rats, 566

Butcher, R. W., see Prashad, N., 937

 \mathbf{c}

Campagnone, M., see Berkovich, A., 164

Canfield, D. R., see Madras, B. K., 833

Canonico, P. L., see Nicoletti, F., 689

Capranico, G., see De Isabella, P., 11

Cashman, J. R., and Williams, D. E. Enantioselective S-oxygenation of 2-aryl-1,3-dithiolanes by rabbit lung enzyme preparations, 333 Cashman, J. R., Olsen, L. D., Lambert, C. E., and Presas, M. J. Enantioselective S-ocygenation of para-methoxyphenyl-1,3-ditholane by various tissue preparations: Effect of estradiol, 319

Cavallaro, S., see Nicoletti, F., 689

Cesura, A. M., Bös, M., Galva, M. D., Imhof, R., and Da Prada, M. Characterization of the binding of [³H]Ro 41-1049 to the active site of human monoamine oxidase-A, 358

Chang, R. S. L., and Lotti, V. J. Two distinct angiotensin II receptor binding sites in rat adrenal revealed by new selective nonpeptide ligands, 347

Chen, S., see Liu, X.-F., 911

Cheung, A. H., Dixon, R. A. F., Hill, W. S., Sigal, I. S., and Strader, C. D. Separation of the structural requirements for agonist-promoted activation and sequestration of the β -adrenergic receptor, 775

Cheung, A. H., see Huang, R.-R. C., 304

Choi, O. H., Padgett, W. L., Nishizawa, Y., Gusovsky, F. Yasumoto, T., and Daly, J. W. Maitotoxin: Effects of calcium channels, phosphoinositide breakdown, and arachidonate release in pheochromocytoma PC12 cells, 222

Chu, A., Diaz-Munoz, M., Hawkes, M. J., Brush, K., and Hamilton, S. L. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel, 735

Cieslinski, L. B., see Torphy, T. J., 206

Clements, D. J., see Cole, S. P. C., 192

Cler, J. A., see Rao, T. S., 978

Cole, S. P. C., Downes, H. F., Mirski, S. E. L., and Clements, D. J. Alterations in glutathione and glutathione-related enzymes in a multidrug-resistant small cell lung cancer cell line, 192

Compton, R. P., see Monahan, J. B., 780

Connelly, M. C., see Fridland, A., 665

Conner, D. A., and Mansour, T. E. Serotonin receptor-mediated activation of adenylate cyclase in the neuroblastoma NCB.20: A novel 5-hydroxytyptamine receptor, 742

Connor, H. D., Lacagnin, L. B., Knecht, K. T., Thurman, R. G., and Mason, R. P. Reaction of glutathione with a free radical metabolite of carbon tetrachloride, 443

Coon, M. J., see Ding, X., 489

Cooney, D. A., see Hao, Z., 157

Cooney, D. A., see Masood, R., 590

Copani, A., see Nicoletti, F., 689

Cordi, A. A., see Monahan, J. B., 780

Costa, T., Lang, J., Gless, C., and Herz, A. Spontaneous association between opioid receptors and GTP-binding regulatory proteins in native membranes: Specific regulation by antagonists and sodium ions, 383

Courtney, K. R. Sodium channel blockers: The size/solubility hypothesis revisited, 855

Covey, D. F., see Holland, K. D., 98

Cowan, K. H., see Benz, C. C., 840

Cowan, K. H., see Fairchild, C. R., 801

Cox, F. W., see Benz, C. C., 840

Coy, D. H., see Rorstad, O. P., 971

Cragoe, E. J., Jr., see Demolle, D., 827

Crippen, G. M., see Ghose, A. K., 725

D

Daloze, D., see Van Sande, J., 583

Daly, J. W., see Choi, O. H., 222

Daniell, L. C., see Burnett, D. M., 566

Da Prada, M., see Cesura, A. M., 358

Dave, J. R., Tabakoff, B., and Hoffman, P. L. Ethanol withdrawal seizures produce increased c-fos mRNA in mouse brain, 367

Davis, J. P., see Im, W. B., 429

Davis, R. L., see Henkel-Tigges, 7

De Castiglione, R., see Lazarus, L. H., 886

De Clercq, E., Bernaerts, R., Merta, A., and Rosenwirth, B. Mechanism of action of 5-(2-chloroethyl)-2'-deoxyuridine, a selective inhibitor of herpes simplex virus replication, 658

De Clercq, E., see Balzarini, J., 395, 402

Dehaven, R. N., see Huang, R.-R. C., 304

De Isabella, P., Capranico, G., Binaschi, M., Tinelli, S., and Zunino, F. Evidence of DNA topoisomerase II-dependent mechanisms of multidrug resistance in P388 Leukemia cells, 11

Demolle, D., Lecomte, M., Boutherin-Falson, O., Cragoe, E. J., Jr., Nairn, A. C., and Boeynaems, J. M. Amiloride analogs induce the phosphorylation of elongation factor-2 in vascular endothelial cells, 827

Deneubourg, F., see Van Sande, J., 583

Den Kelder, G. M. D.-O., see Koymans, L., 452

De Rooij, B. M., see Haenen, G. R. M. M., 412

Desarmenien, M., see Hamann, M., 578

Dhar, A., Paul, A. K. and Shukla, S. D. Platelet-activating factor stimulation of tyrosine kinase and its relationship to phospholipase C in rabbit platelets: Studies with genistein and monoclonal antibody to phosphotyrosine, 519

Diaz-Munoz, M., see Chu, A., 735

Diehl, R. E., see Huang, R.-R. C., 304

Difiglia, M., see Madras, B. K., 833

Ding, X., and Coon, M. J. Immunochemical characterization of multiple forms of cytochrome P-450 in rabbit nasal microsomes and evidence for tissue-specific expression of P-450s NMa and NMb, 489

Dirksen, R. T., see Enyeart, J. J., 752

Dixon, R. A. F., see Cheung, A. H., 775

Dixon, R. A. F., see Huang, R.-R. C., 304

Doehmer, J., see Dogra, S., 608

Dogra, S., Doehmer, J., Glatt, H., Siegert, P., Friedberg, T., Seidel, A., and Oesch, F. Stable expression of rat cytochrome P-450IA1 cDNA in V79 Chinese hamster cells and their use in mutagenicity testing, 608

Downes, H. F., see Cole, S. P. C., 192

Driscoll, J. S., see Masood, R., 590

Dugas, M., see Wang, G., 17, 144

Duman, R. S., see Garrett, K. M., 652

Dumont, J. E., see Van Sande, J., 583 Dumuis, A., see Bockaert, J., 408

Durie, E. L., see Pessah, I. N., 503

E

El-Fakahany, E. E., see Forray, C., 893

El-Fakahany, E. E., see Surichamorn, W., 860

Emmett, M. R., see Rao, T. S., 978

Enyeart, J. J., Dirksen, R. T., Sharma, V. K., Williford, D.J., and Sheu, S.-S. Antipsychotic pimozide is a potent Ca²⁺ channel blocker in heart 752

Enz, A., Goldstein, M., and Meller, E. Dopamine agonist-induced elevation of striatal acetylcholine: Relationship between receptor occupancy and response in normal and denervated rat striatum, 560

Evans, W. E., and Relling, M. V. XbaI 16 -and 9-kilobase DNA restriction fragments identify a mutant allele for debrisoquin hydroxylase: Report of a family study, 639

Eyer, P., see Maples, K. R., 311

 \mathbf{F}

Fahien, C. M., see Fahien, L. A., 943

Fahien, L. A., Teller, J. K., Macdonald, M. J., and Fahien, C. M. Regulation of glutamate dehydrogenase by Mg²⁺ and magnification of leucine activation by Mg²⁺, 943

Fairchild, C. R., Moscow, J. A., O'Brien, E. E., and Cowan, K. H. Multidrug resistance in cells transfected with human genes encoding a variant P-glycoprotein and glutathione S-transferase-π, 801

Farb, D. H., see Roca, D. J., 37, 710

Farb, D. H., see Wu, F.-S, 597

Farber, J. L., see Sakaida, I., 435

Farquhar, D., see Hao, Z., 157

Farrant, M., see Roca, D. J., 37 Felsted, R. L., see Politi, P. M., 790 Feltz, P., see Hamann, M., 578 Feoktistov, I., see Paul, S., 870 Ferrendelli, J. A., see Holland, K. D., 98

Ford, J. M., see Benz, C. C., 840

Forray, C., and El-Fakahany, E. E. On the involvement of multiple muscarinic receptor subtypes in the activation of phosphoinositide metabolism in rat cerebral cortex, 893

Forray, C., see Surichamorn, W., 860 Fournier, A., see Rorstad, O. P., 971 Fox, I. H., see Zolnierowicz, S., 554 Freidman, E., see Wang, H.-Y., 75 Frey, D. K., see Bidlack, J. M., 50

Fridland, A., Connelly, M. C., and Ashmun, R. relationship of deoxynucleotide changes to inhibition of DNA synthesis induced by the antiretroviral agent 3'-azido-3'-deoxythymidine and release of

its monophosphate by human lymphoid cells (CCRF-CEM), 665 Fridland, A., see Masood, R., 590 Friedberg, T., see Dogra, S., 608 Friedman, L., see Roca, D. J., 710 Froimowitz, M., see Leli, U., 286 Fujimori, S., see Garrett, K. M., 652

G

Gago, F., and Richards, W. G. Netropsin binding to poly[d(IC)] poly[IC)] and poly[d(GC] poly[d(GC)]: A computer simulation, 341

Galliano, M., see Kragh-Hansen, U.,, 238 Galva, M. D., see Cesura, A. M., 358 Garcia, A., see Arbonés, L., 921

Garrett, K. M., Saito, N., Duman, R. S., Abel, M. S., Ashton, R. A., Fujimori, S., Beer, B., Tallman, J. F., Vitek, P., and Blume A. J. differential expression of γ-aminobutyric acid, receptor subunits, 652

Gdula, D. C., see Stormann, T. M., 1 Geertsen, S., see Quik, M., 90 Gelboin, H. V., see Riddick, D. S., 130 Gerhardt, M. A., see Michel, M. C., 65

Ghose, A. K., and Crippen, G. M. Modeling the benzodiazepine receptor binding site by the general three-dimensional structure-directed quantitative structure-activity relationship method REMOTED-ISC, 725

Gibbs, T. T., see Roca, D. J., 710 Gibbs, T. T., see Wu, F.-S., 597 Gierschik, P., see Reithmann, C., 631 Gies, J. P., see Haddad, E. B., 682 Glatt, H., see Dogra, S., 608 Gless, C., see Costa, T., 383 Gnegy, M. E., see Mangels, L. A., 820 Goka, T. J., see Prashad, N., 937

Goldstein, G., see Quik, M., 90 Goldstein, J., see Andries, M. J., 990

Goldstein, M., see Enz, A., 560 Goldstein, M., see Meller, E., 231

Goldstein, M., see Meller, E., 231 Gonzalez, H., see Pan, S.-S., 966

Gorski, J., see Shull, J. D., 215

Graham, R. M., see Terman, B. I., 526

Grapengiesser, E., Gylfe, E., and Hellman, B. Sulfonylurea mimics the effect of glucose in inducing large amplitude oscillations of cytoplasmic Ca²⁺ in pancreatic β -cells, 461

Griengl, H., see Balzarini, J., 395 Grodski, S., see Terman, B. I., 526

Gross, R. A., Wiley, J. W., Ryan-Jastrow, T. and Macdonald, R. L. Regulation by GTP and its stable thiol derivaties of calcium current components in rat nodose ganglion neurons, 546

Grudt, T. J., and Jahr, C. E. Quisqulate activites N-methyl-D-asparate receptor channels in hippocampal neurons maintained in culture, 477

Guengerich, F. P., see Voigt, J. M., 182 Guglietta, A., see Lazarus, L. H., 886 Guidotti, A., see Berkovich, A., 164 Guillouzo, A., see Vandenberghe, Y., 372 Gumucio, J. J., see Traber, P. G., 810

Gusovsky, F., see Choi, O. H., 222

Guyda, H. J., Mathieu, L., Lai, W., Manchester, D., Wang, S.-L., Ogilvie, S., and Shiverick, K. T. Benzo(a)pyrene inhibits epidermal growth factor binding and receptor autophosphorylation in human placental cell cultures, 137

Gylfe, E., see Grapengeisser, E., 461

H

Haddad, E. B., Landry, Y., and Gies, J. P. Sialic acid residues as catalysts for M_2 -muscarinic agonist-receptor interactions, 682

Haenen, G. R. M. M., De Rooij, B. M., Vermeulen, N. P. E., and Bast, A. Mechanism of the reaction of ebselen with endogenous thiols: Dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen, 412

Hait, W. N., see Benz, C. C., 840

Halpern, J. L., and Moss, J. Immunological characterization of of guanine nucleotide-binding protein: Effects of a monoclonal antibody against the γ subunit of transducin on guanine nucleotide-binding protein-receptor interactions, 797

Hamann, M., Desarmenien, M., Vanderheyden, P., Piguet, P., and Feltz, P. Electrophysical study of *tert*-butylbicyclophosphorothion-ate-induced block of spontaneous chloride channel, 578

Hamilton, S. L., see Chu, A., 735

Han, C., Wilson, K. M., and Minneman, K. P. α_1 -Adrenergic receptor subtypes and formation of inositol phosphates in dispersed hepatocytes and renal cells, 903

Hao, Z., Cooney, D. A., Farquhar, D., Perno, C. F., Zhang, K., Masood, R., Wilson, Y., Hartman, N. R., Balzarini, J., and Johns, D. G. Potent DNA chain termination activity and selective inhibition of human immunodeficiency virus reverse transcriptase by 2',3'-dideoxyuridine-5'-triphosphate, 157

Hao, Z., see Masood, R., 590

Hartman, N. R., see Hao, Z., 157

Harwood, F. C., see Blakely, R. L., 328

Haslam, R. J., see Maurice, D. H., 671

Hauser, G., see Leli, U., 286

Hawkes, M. J., see Chu, A., 735

Hayden, P. J., and Stevens, J. L. Cysteine conjugate toxicity, metabolism, and binding to macromolecules in isolated rat kidney mitochondria, 468

He, H.-T., Rens-Domiano, S., Martin, J.-M., Law, S., Borislow, S., Woolkalis, M., Manning, D., and Reisine, T. Solubilization of active somatostatin receptors from rat brain, 614

Hellman, B., see Grapengeisser, E., 461

Henkel-Tigges, J., and Davis, R. L. Rat homologs of the *Drosophila* dunce gene code for cyclic AMP phosphodiesterases sensative to rolipram and RO 20-1724, 7

Hensley, P., see Berkovich, A., 164

Herz, A., see Costa, T., 383

Hess, H.-J., see Terman, B. I., 526

Hill, W. S., see Cheung, A. H., 775

Hiratsuka, A., see Ishizuka, T., 983

Hiratsuka, A., see Ogura, K., 848

Hoffman, P. L., see Dave, J. R., 372, 367 Vandenberghe, Y., Morel, F., Pemble, S., Tayl, units 1-2 and 7 in cultured rat hepatocytes

Holland, K. D., Naritoku, D. K., McKeon, A. C., Ferrendelli, J. A., and Covey, D. F. Convulsant and anticonvulsant cyclopentanones and cyclohexanones, 98

Hollister, A. S., see Paul, S., 870

Honerjäger, P., see Wang, G., 17, 144

Hood, W. F., see Monahan, J. B., 780

Hooper, W. D., see Reilly, P. E. B., 767

Houchi, H., Masserano, J. M., Bowyer, J. F., and Weiner, N. Regulation of tyrosine hydroxylase activity in pheochromocytoma PC-12 cells by bradykinin, 104

Huang, M., see Rorstad, O. P., 971

Huang, R.-R. C., Dehaven, R. N., Cheung, A. H., Diehl, R. E., Dixon, R. A. F., and Strader, C. D. Identification of allosteric antagonists of receptor-guanine nucleotide-binding protein interactions, 304

Huang, T.-J., and Maines, M. D. Bromobenzene-medicated alteration in activity and electrophoretic pattern of biliverdin reductase variants in rat kidney, 25

Huff, K. D., see Blakely, R. L., 328

Hunchak, K., see Mills, D. C. B., 271

Hutchison, K., see Zolnierowicz, S., 554

I

Im, W. B., Blakeman, D. P., Davis, J. P., and Ayer, D. E. Studies on the mechanism of interactions between anesthetic steroids and γ -aminobutyric acid, receptors, 429

Imhof, R., see Cesura, A. M., 358

Insel, P. A., see Jasper, J. R., 44

Insel, P. A., see Michel, M. C., 65

Ishizuka, T., Komiya, I., Hiratsuka, A., and Watabe T. Novel type of ornithine-glutathione double conjugate excreted as a major metabolite into the bile of rats administered clebopride, 983

Ivins, K. J., and Molinoff, P. B. Serotonin 5-Hydroxytryptamine₂ receptors coupled to phosphoinositide hydrolysis in a clonal cell line, 622

Iwahashi, K., see Nakanishi, S., 482

Iyanagi, T., see Liu, X.-F., 911

Iyengar, S., see Rao, T. S., 978

J

Jacobson, K. A., see Ramkumar, V., 149

Jahr, C. E. see Grudt, T. J., 477

Jakobs, K. H., see Reithmann, C., 631

Jasper, J. R., Michel, M. C., and Insel, P. A. Amplification of cyclic AMP generation reveals agonistic effects of certain β -adrenergic antagonists, 44

Javitt, D. C., and Zukin, S. R. Rat brain N-methyl-D-aspartate receptors require multiple molecules of agonist for activation, 603

Jenkins, B. G., and Lauffer, R. B. Detection of site-specific binding and co-binding of ligands to human serum albumin using ¹⁹F NMR, 111

Johns, D. G., see Hao, Z., 157

Johns, D. G., see Masood, R., 590

Johnson, K. M., see Sacaan, A. I., 572

Johnson, R. A., and Toews, M. L. Protein kinase C activators sensitize cyclic AMP accumulation by intact 1321N1 human astrocytoma cells, 296

Jørgensen, N. A., see Brodersen, R., 704

K

Kaplan, R. A., see Bidlack, J. M., 50

Karl, D. W., see Mills, D. C. B., 271

Kase, H., see Nakanishi, S., 482

Kato, R., see Nakaki, T., 30

Kawabata, T. T., see Voigt, J. M., 182

Keniry, M. A., see Benz, C. C., 840

Kessler, M., see Massicotte, G., 278

Ketterer, B., see Vandenberghe, Y., 372

Kirby, E. P., see Mills, D. C. B., 271

Klopman, G., and Srivastava, S. Computer-automated structure evaluation of gastric antiulcer compounds: Study of cytoprotective and antisecretory imidazo[1,2-a]pyridines and -pyrazines, 958 Klotz, K.-N., see Wilken, A., 916

Knecht, K. T., see Connor, H. D., 443

Komiya, I., see Ishizuka, T., 983

Koymans, L., Van Lenthe, J. H., Den Kelder, G. M. D.-O. and Vermeulen, N. P. E. Mechanisms of activation of phenacetin to reactive metabolites by cytochrome P-450: A theoretical study involving radical intermediates, 452

Kozikowski, A. P., and Pan, Y.-P. Structural determinants of affinity for the phencyclidine binding site of the N-methyl-D-aspartate receptor complex: Discovery of a rigid phencyclidine analogue of high binding affinity, 352

Kragh-Hansen, U., Brennan, S. O., Galliano, M., and Sugita, O. Binding of warfarin, salicylate, and diazepam to genetic variants of human serum albumin with known mutations, 238

Krukow, N., see Brodersen, R., 704

Kuroda, K., see Nakanishi, S., 482

Kyle, M. E., see Sakaida, I., 435

 \mathbf{L}

Lacagnin, L. B., see Connor, H. D., 443

Lafontan, M., see Langin, D., 876

Lai, W., see Guyda, H. J., 137

Lambert, C. E., see Cashman, J. R., 319

Landry, Y., see Haddad, E. B., 682

Lang, J., see Costa, T., 383

Langin, D., Paris, H., and Lafontan, M. Binding of [3 H]Idazoxan and of its methoxy derivative [3 H] RX821002 in human fat cells: [3 H] Idazoxan but not [3 H] RX821002 labels additional non- α_2 -adrenergic binding sites, 876

Lanthorn, T. H., see Monahan, J. B., 780

Lauffer, R. B., see Jenkins, B. G., 111

Laurenza, A., Morris, D., and Seamon, K. B. Irreversible loss of [3H] forskolin binding sites in human platelets by :ga-haloacetyl analogs of forskolin, 69

Law, S., see He, H.-T., 614

Laychock, S. G. Fatty acids and cyclooxygenase and lipoxygenase pathway inhibitors modulate inositol phosphate formation in pancreatic islets, 928

Lazarus, L. H., Wilson, W. E., Guglietta, A., and De Castiglione, R. Dermorphin interaction with rat brain opioid receptors: Involvement of hydrophobic sites in the binding domain, 886

Lecomte, M., see Demolle, D., 827

Lee, T. D., see Liu, X.-F., 911

Legesse, K., see Liu, X.-F., 911

Leli, U., Hauser, G., and Froimowitz, M. Requirements for the activation of protein kinase C: Comparison of the molecular geometries of phorbol and diacylglycerol, 286

Lemaire, S., see Murphy, B. J., 173

Le Pecq, J. B., see Báez, A., 377

Li, S., see Liu-Chen, L.-Y., 243

Lim, I., see Rettie, A. E., 643

Liu, M.-L., see Liu, X.-F., 911

Liu, X.-F., Liu, M.-L., Iyanagi, T., Legesse, K., Lee, T. D., and Chen, S. Inhibition of rat liver NAD(P)H: Quinone acceptor oxidoreductase (DT-diaphorase) by flavonoids isolated from the Chinese herb scutellariae radix (Huang Qin), 911

Liu-Chen, L.-Y., Li, S., and Tallarida, R. J. Studies on kinetices of $[^3H]\beta$ -funaltrexamine binding to μ opioid receptor, 243

Lotti, V. J., see Chang, R. S. L., 347

Lucier, G. W., see Andries, M. J., 990

Lynch, G., see Massicotte, G., 278

M

Macdonald, M. J., see Fahien, L. A., 943 Macdonald, R. L. see Gross, R. A., 546 Madras, B. K., Canfield, D. R., Pfaelzer, C., Vittimberga, F. J., Jr., Difiglia, M., Aronin, N., Bakthavachalam, V., Baindur, N., and Neumeyer, J. L. Fluorescent and biotin probes for dopamine receptors: D₁ and D₂ receptor affinity and selectivity, 833

Magnan, J., see Tiberi, M., 694

Mahan, L. C., and Burch, R. M. Functional expression of B_2 bradykinin receptors from Balb/c cell mRNA in *Xenopus* oocytes, 785

Maines, M. D., see Huang, T.-J., 25

Manchester, D., see Guyda, H. J., 137

Mangels, L. A., and Gnegy, M. E. Muscarinic receptor-mediated translocation of calmodulin in SK-N-SH human neuroblastoma cells,

Mannervik, B., see Berhane, K., 251

Manning, D., see He, H.-T., 614

Mansour, T. E., see Conner, D. A., 742

Maples, K. R., Eyer, P, and Mason, R. P. Aniline-, phenylhydroxylamine-, nitrosobenzene-, and nitrobenzene-induced hemoglobin thiyl free radical formation in vivo and in vitro, 311

Marks, G. S., see Riddick, D. S., 130

Marquez, A., see Masood, R., 590

Martin, J.-M., see He, H.-T., 614

Martin, M. V., see Voigt., J. M., 182

Mason, R. P., see Connor, H. D., 443

Mason, R. P., see Maples, K. R., 311

Mason, S. R., see Reilly, P. E. B., 767

Masood, R., Ahluwalia, G. S., Cooney, D. A., Fridland, A., Marquez, V. E., Driscoll, J. S., Hao, Z., Mitsuya, H., Perno, C.-F., Broder, S., and Johns, D. G. 2'-Fluoro-2',3'-dideoxyarabinosyladenine: A metabolically stable analogue of the antiretroviral agent 2',3'-dideoxyadensone, 590

Masood, R., see Hao, Z., 157

Masserano, J. M., see Houchi, H., 104

Massicotte, G., Kessler, M., Lynch, G. and Baudry, M. N-Methyl-D-aspartate and quisqualate/DL-α-amino-3-hydroxy-5-methylisoxa-zole-4-propioni c acid receptors: Differential regulation by phospholipase C treatment, 278

Mathieu, L., see Guyda, H. J., 137

Matlin, S. A., see Benz, C. C., 840

Maurice, D. H., and Haslam, R. J. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: Inhibition of cyclic AMP breakdown by cyclic GMP, 671

Mcdonnell, M., see Traber, P. G., 810

McKeon, A. C., see Holland, K. D., 98

McPhie, P., see Berkovich, A., 164

Meier, G. P., see Rettie, A. E., 643

Meller, E., Goldstein, M., and Bohmaker, K. Receptor reserve for 5-hydroxytryptamine _{1A}-mediated inhibition of serotonin synthesis: Possible relationship to anxiolytic properties of 5-hydroxytryptamine _{1A} agonists, 231

Meller, E., see Enz, A., 560

Merta, A., see De Clercq, E., 658

Michel, M. C., Regan, J. W., Gerhardt, M. A., Neubig, R. R., Insel, P. A., and Motulsky, H. J. Nonadrenergic [3 H]idazoxan binding sites are physically distinct from α_2 -adrenergic receptors, 65

Michel, M. C., see Jasper, J. R., 44

Mick, S., see Rao, T. S., 978

Mills, D. C. B., Hunchak, K., Karl, D. W., and Kirby, E. P. Effect of platelet activation on the agglutination of platelets by von Willebrand factor. 271

Minneman, K. P., see Han C., 903

Mirski, S. E. L., see Cole, S. P. C., 192

Mitsuya, Z., see Masood, R., 590

Molinoff, P. B., see Ivins, K. J., 622

Monahan, J. B., Biesterfeldt, J. P., Hood, W. F., Compton, R. P., Cordi, A. A., Vazquez, M. I., Lanthorn, T. H., and Wood, P. L. Differential modulation of the associated glycine recognition site by competitive N-methyl-D-aspartate receptor antagonists, 780

Mong, S., and Sarau, H. M., Post soluble binding to the leukotriene D₄ receptor from guinea pig lung membranes, 60

Morel, F., see Vandenberghe, Y., 372

Morris, D., see Laurenza, A., 69

Morrow, A. L., Pace, J. R., Purdy, R. H., and Paul, S. M. Characterization of steroid interactions with γ -aminobutyric acid receptorgated chloride ion channels: Evidence of multiple steroid recognition sites, 263

Moscow, J. A., see Fairchild, C. R., 801

Moss, J., see Halpern, J. L., 797

Motulsky, H. J., see Michel, M. C., 65

Müller, U., see Reithmann, C., 631

Murphy, B. J., Rogers, C. A., Sunahara, R. K., Lemaire, S., and Tuana, B. S. Identification, characterization, and photoaffinity labeling of the dihydropyridine receptor associated with the L-type calcium channel from bovine adrenal medulla, 173

N

Nairn, A. C., see Demolle, D., 827

Nakaki, T., Nakayama, M., Yamamoto, S., and Kato, R. α_1 -Adrenergic stimulation and β_2 -adrenergic inhibition of DNA synthesis in vascular smooth muscle cells, 30

Nakanishi, S., Yamada, K., Iwahashi, K., Kuroda, K., and Kase, H. KT5926, a potent and selective inhibitor of myosin light chain kinase, 482

Nakayama, M., see Nakaki, T., 30

Naritoku, D. K., see Holland, K. D., 98

Neubig, R. R., see Michel, M. C., 65

Neumeyer, J. L., see Madras, B. K., 833

Nicoletti, F., Bruno, V., Cavallaro, S., Copani, A., Sortino, M. A., and Canonico, P. L. Specific binding sites for inositolhexakisphosphate in brain and anterior pituitary, 689

Nishizawa, Y., see Choi, O. H., 222

0

O'Brien, E. E., see Fairchild, C. R., 801

Oesch, F., see Dogra, S., 608

Ogilvie, S, see Guyda, H. J., 137

Ogura, K., Sohtome, T., Sugiyama, A., Okuda, H., Hiratsuka, A., and Watabe, T. Rat liver cytosolic hydroxysteroid sulfotransferase (sulfotransferase a) catalyzing the formation of reactive sulfate esters from carcinogenic polycyclic hydroxymethylarenes, 848

Okuda, H., see Ogura, K., 848

Olsen, L. D., see Cashman, J. R., 319

Olsen, R. W. see Bureau, M., 497

P

Pace, J. R., see Morrow, A. L., 263

Padgett, W. L., see Choi, O. H., 222

Palayoor, S., see Benz, C. C., 840

Pan, S.-S, and Gonzalez, H. Mitomycin antibiotic reductive potential and related pharmacological activities, 966

Pan, Y.-P., see Kozikowski, A. P., 352

Paris, H., see Langin, D., 876

Park, S. S., see Riddick, D. S., 130

Paul, A. K., see Dhar, A., 519

Paul, S., Feoktistov, I., Hollister, A. S., Robertson, D., and Biaggioni, I. Adenosine inhibits the rise in intracellular calcium and platelet aggregation produced by thrombin: Evidence that both effects are coupled to adenylate cyclase, 870

Paul, S. M., see Morrow, A. L., 263

Pemble, S., see Vandenberghe, Y., 372

Perno, C. F., see Hao, Z., 157

Perno, D.-F., see Masood, R., 590

Pessah, I. N., Durie, E. L., Schiedt, M. J. and Zimanyi, I. Anthraquinone-sensitized Ca2+ release channel from rat cardiac sarcoplasmic reticulum: Possible receptor-medicated mechanism of doxorubicin cardiomyopathy, 503

Pfaelzer, C., see Madras, B. K., 833

Picatoste, F., see Arbonés, L., 921

Piguet, P., see Hamann, M., 578

Politi, P. M., Arnold, S. T., Felsted, R. L., and Sinha, B. K. Pglycoprotein-independent mechanism of resistance to VP-16 in multidrug-resistant tumor cell lines: Pharmacokinetic and photoaffinity labeling studies, 790

Prashad, N., Goka, T. J., Barber, R., and Butcher, R. W. cAMPdependent protein kinase responses of S49 cells are reduced by growth in low epinephrine concentrations, 937

Presas, M. J., see Cashman, J. R., 319

Prough, R. A., see Sherratt, A. J., 198

Purdy, R. H., see Morrow, A. L., 263

Quik, M., Afar, R., Geertsen, S., Audhya, T., Goldstein, G., and Trifaro, J.-M. Thymopoietin, a thymic polypeptide, regulates nicotinic α bungarotoxin sites in chromaffin cells in culture, 90

Ramkumar, V., Barrington, W. W., Jacobson, K. A., and Stiles, G. L. Demonstration of both A₁ and A₂ adenosine receptors in DDT₁ MF-2 smooth muscle cells, 149

Rampe, D., see Schilling, W. P., 80

Rao, T. S., Cler, J. A., Emmett, M. R., Mick, S., Iyengar, S., and Wood, P. L. BMY-14802 antagonizes harmaline- and D-serine-induced increases in mouse cerebellar cyclic GMP: Neurochemical evidence for a σ receptor-mediated functional modulation of responses mediated by the N-methyl-D-aspartate receptor complex in vivo,

Ratansavanh, D., see Vandenberghe, Y., 372

Reasor, M. J., see Thomas, D. J., 255

Regan, J. W., see Michel, M. C., 65

Reilly, P. E. B., Thompson, D. A., Mason, S. R., and Hooper, W. D. Cytochrome P450111A enzymes in rat liver microsomes: Involvement in C3-hydroxylation of diazepam and nordazepam but not Ndealkylation of diazepam and temazepam, 767

Reisine, T., see He, H.-T., 614

Reithmann, C., Gierschik, P., Müller, U., Werdan, K., and Jakobs, K. H. Pseudomonas exotoxin A prevents β -adrenoceptor-induced upregulation of G_i protein α-subunits and adenylyl cyclase desensitization in rat heart muscle cells, 1, 63

Relling, M. V., see Evans, W. E., 639

Rens-Domiano, S., see He, H.-T., 614

Rettie, A. E., Bogucki, B. D., Lim, I., and Meier, G. P. stereoselective sulfoxidation of a series of alkyl p-tolyl sulfides by microsomal and purified flavin-containing monooxygenases, 643

Richards, W. G., see Gago, F., 341

Riddick, D. S., Park, S. S., Gelboin, H. V., and Marks, G. S. Effects of 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine on hepatic cytochrome P-450 heme, apoproteins, and catalytic activities following in vivo administration to rats,

Riek, R. P., see Terman, B. I., 526

Riou, G., see B:aaaez, A., 377

Riou, J. F., see Báez, A., 377

Robertson, D., see Paul, S., 870

Roca, D. J., Rozenberg, I., Farrant, M., and Farb, D. H. Chronic agonist exposure induces down-regulation and allosteric uncoupling of the γ-aminobutyric acid/benzodiazepine receptor complex, 37

Roca, D. J., Schiller, G. D., Friedman, L., Rozenberg, I., Gibbs, T. T., and Farb, D. H. γ-Aminobutyric acid, receptor regulation in culture: Altered allosteric interactions following prolonged exposure to benzodiazepines, barbiturates, and methylxanthines, 710

Rogers, C. A., see Murphy, B. J., 173

Rogiers, V., see Vandenberghe, Y., 372

Rorstad, O. P., Wanke, I., Coy, D. H., Fournier, A., and Huang, M. Selectivity for binding of peptide analogs to vascular receptors for vasoactive intestinal peptide, 971

Rosenwirth, B., see De Clercq, E., 658

Ross, D., see Thomas, D. J., 255

Rozenberg, I., see Roca, D. J., 37, 710

Ryan-Jastrow, T., see Gross, R. A., 546

S

Sacaan, A. I., and Johnson, K. M. Characterization of the stimulatory and inhibitory effects of polyamines on [3H]N-(1-[theinyl]cytclohexyl)piperidine binding to the N-methyl-D-aspartate receptor ionophore complex, 572

Sadler, A., see Thomas, D. J., 255

Saito, N., see Garrett, K. M., 652

Sakaida, I., Kyle, M. E. and Farber, J. L. Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress, 435

Sarau, H. M., see Mong, S., 60

Schenkman, J. B., see Thummel, K. E., 119

Schiedt, M. J., see Pessah, I. N., 503

Schiller, G. D., see Roca, D. J., 710

Schilling, W. P., Zaher, M. C., and Rampe, D. Effect of inorganic calcium channel blockers on dihydropyridine binding to cardiac sarcolemma, 80

Schimerlik, M. I., see Tota, M. R., 950, 996

Schonbrunn, A., see Swope, S. L., 758

Schwabe, U., see Wilken, A., 916

Seamon, K. B., see Laurenza, A., 69

Sebben, M., see Bockaert, J., 408

Seidel, A., see Dogra, S., 608

Seyed-Mozaffari, A., see Bidlack, J. M., 50

Sharma, V. K., see Enyeart, J. J., 752

Sherratt, A. J., Banet, D. E., and Prough, R. A. Glucocorticoid regulation of polycyclic aromatic hydrocarbon induction of cytochrome P4501A1, glautahione S-transferases, and NAD (P)H:quinone oxidoreductase in cultured fetal rat hepatocytes, 198

Sheu, S.-S., see Enyeart, J. J., 752

Shiverick, T., see Guyda, H. A., 137

Shukla, S. D. see Dhar, A., 519

Shull, J. D., and Gorski, J. Regulation of prolactin gene transcription in vivo: Interactions between estrogen, pimozide, and α -ergocryptine, 215

Siegel, D., see Thomas, D. J., 255

Siegert, P., see Dogra, S., 608

Sigal, I. S., see Cheung, A. H., 775

Sinha, B. K., see Politi, P. M., 790

Sohtome, T., see Ogura, K., 848

Sortino, M. A., see Nicoletti, F., 689

Srivastava, S., see Klopman, G., 958

Stevens, J. L., see Hayden, P. J., 468

Stiles, G. L., see Ramkumar, V., 149

Storm, D. R., see Tota, M. R., 950

Stormann, T. M., Gdula, D. C., Weiner, D. M., and Brann, M. R. Molecular cloning and expression of a dioamine D2 receptor from human retina. 1

Strader, C. D., see Cheung, A. H., 775

Strader, C. D., see Huang, R.-R. C., 304

Subrahmanyam, V.V., see Thomas, D. J., 255

Sugita, O., see Kragh-Hansen, U., 238

Sugiyama, A., see Ogura, K., 848

Sunahara, R. K., see Murphy, B. J., 173

Surichamorn, W., Forray, C., and El-Fakahany, E. E. Role of intracellular Ca2+ mobilization in muscarinic and histamine receptormediated activation of guanylate cyclase in N1E-115 neuroblastoma cells: Assessment of the arachidonic acid release hypothesis, 860

Swope, S. L., and Schonbrunn, A. Desensitizaton of islet cells to bombesin involves both receptor docon-modulation and inhibition of receptor function, 758

T

Tabakoff, B., see Dave, J. R., 367

Tallarida, R. J., see Liu-Chen, L.-Y., 243

Tallman, J. F., see Garrett, K. M., 652

Tawfik-Schlieper, H., see Wilken, A., 916

Taylor, J. B., see Vandenberghe, Y., 372

Teller, J. K., see Fahien, L. A., 943

Terman, B. I., Riek, R. P., Grodski, A., Hess, H.-J., and Graham, R. M. Identification and structural characterization of α_1 -adrenergic receptor subtypes, 526

Thomas, D. J., Sadler, A., Subrahmanyam, V. V., Siegel, D., Reasor, M. J. Wierda, D., and Ross, D. Bone marrow stromal cell bioactivation and detoxification of the benzene metabolite hydroquinone: Comparison of macrophages and fibroblastoid cells, 255

Thompson, C. L., see Andries, M. J., 990

Thompson, D. A., see Reilly, P. E. B., 767

Thunmel, K. E., and Schenkman, J. B. Effects of testosterone and growth hormone treatment on hepatic microsomal P450 expression in the diabetic rat, 119

Thurman, R. G., see Connor, H. D., 443

Tiberi, M., and Magnan, J. Quantitative analysis of multiple κ -opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: Resolution of high and low affinity states of the κ_2 receptors by a computerized model-fitting technique, 694

Tinelli, S., see De Isabella, P., 11

Toews, M. L., see Johnson, R. A., 296

Terphy, T. J., and Cieslinski, L. B. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle, 206

Tota, M. R., and Schimerlik, M. I. Partial agonist effects on the interaction between the atrial muscarinic receptor and the inhibitory guanine nucleotide-binding protein in a reconstituted system, 996

Tota, M. R., Xia, Z., Storm, D. R., and Schimerlik, M. I. Reconstitution of muscarinic receptor-mediated inhibition of adenylyl cyclase, 950

Townsend, A. J., see Benz, C. C., 840

Traker, P. G., Wang, W., Mcdonnell, M., and Gumucio, J. J. P450IIB gene expression in rat small intestine: Cloning of intestinal P459IIB1 mRNA using the polymerase chain reaction and transcriptional regulation of induction, 810

Trifaro, J.-M., see Quik, M., 90

Tuans, B. S., see Murphy, B. J., 173

V

Vanderheyden, P., see Hamann, M., 578

Van Lenthe, J. H. see Koymans, L., 452

Van Sande, J., Deneubourg, F., Beauwens, R., Braekman, J. C., Doloze, D., and Dumont, J. E. Inhibition of iodide transport in thyroid cells by dysidenin, a marine toxin and some of its analogs, , 583

Vasquez, M. I., see Monahan, J. B., 780

Verbruggen, A., see Balzarini, J., 402

Vereruysse, A., see Vandenberghe, Y., 372

Vermeulen, N. P. E., see Haenen, G. R. M. M., 412

Vermeulen, N. P. E., see Koymans, L., 452

Vitel, P., see Garrett, K. M., 652

Vittimberga, F. J., Jr., see Madras, B. K., 833

Voigt, J. M., Kawabata, T. T., Burke, J. P., Martin, M. V., Guengerich, F. P., and Baron, J. In situ localization and distribution of xenobiotic-activating enzymes and aryl hydrocarbon hydroxylase activity in lungs of untreated rats, 182

Vorum, H., see Brodersen, R., 704

W

Wang, G., Dugas, M., Armah, B. I., and Honerjäger, P. Sodium channel comodification with full activator reveals vertridine reaction dynamics, 144

Wang, G., Dugas, M., Armah, B. I., and Honerjäger, P. Interaction between DPI 201-106 enantiomers at the cardiac sodium channel, 17

Wang, H.-Y., and Freidman, E. Central 5-hydroxytryptamine receptorlinked protein kinase C translocation: A functional postsynaptic signal transduction system, 75

Wang, S.-L., see Guyda, H. J., 137

Wang, W., see Traber, P. G., 810

Wanke, I., see Rorstad, O. P., 971

Watabe, T., see Ishizuka, T., 983

Watabe, T., see Ogura, K., 848

Weiner, D. M., see Stormann, T. M., 1

Weiner, N., see Houchi, H., 104

Werdan, K., see Reithmann, C., 631

White, M. M., and Aylwin, M. Niflumic and flufenamic acids are potent reversible blockers of Ca²⁺-activated Cl-channels in *Xenopus* oocytes, 720

White, M. M., see Buller, A. L., 423

Wierda, D., see Thomas, D. J., 255

Wiley, J. W. see Gross, R. A., 546

Wilken, A., Tawfik-Schlieper, H., Klotz, K.-N., and Schwabe, U. Pharmacological characterization of the adenylate cyclase-coupled adenosine receptor in isolated guinea pig atrial myocytes, 916

Williams, D. E., see Cashman, J. R., 333

Williford, D. J., see Enyeart, J. J., 752

Wilson, K. M., see Han, C., 903

Wilson, W. E., see Lazarus, L. H., 886

Wilson, Y., see Hao, Z., 157

Wood, P. L., see Monahan, J. B., 780

Wood, P. L., see Rao, T. S., 978

Woolkalis, M., see He, H.-T., 614

Work, C., see Zolnierowicz, S., 554

Wu, F.-S., Gibbs, T. T., and Farb, D. H. Inverse modulation of γ -aminobutyric acid- and glycine-induced currents by progesterone, 597

X

Xia, Z., see Tota, M. R., 950

Y

Yamada, K., see Nakanishi, S., 482 Yamamoto, S., see Nakaki, T., 30

Yasumoto, T., see Choi, O. H., 222

Z

Zaher, M. C., see Schilling, W. P., 80

Zahniser, N. R., see Burnett, D. M., 566

Zhang, K., see Hao, Z., 157

Zimanyi, I., see Pessah, I. N., 503

Zolnierowicz, S., Work, C., Hutchinson, K., and Fox, I. H. Partial separation of platelet and placental adenosine receptors from adsenosine A₂-like binding protein, 554

Zukin, S. R., see Javitt, D. C., 603

Zunino, F., see De Isabella, P., 11

Δ

Acetylcholine, striatal, dopamine agonist-induced elevation (rat), 560 Acrolein, inactivation by glutathione transferases, classes alpha, mu, and pi, 251

Adenosine, inhibition of calcium rise, platelet aggregation, thrombin, 870

Adenosine monophosphate, cyclic

accumulation, protein kinase C activators, astrocytoma cells (human), 296

-dependent protein kinase, growth in low epinephrine concentrations, S49 cells, 937

generation, agonistic effects, β -adrenergic antagonists, 44 inhibition of breakdown by cyclic GMP, inhibited platelet function, nitrovasodilators and activators of adenylate cyclase, 671

Adenylate cyclase

activators, inhibition of platelet function, nitrovasodilators, 671 -coupled adenosine receptor, atrial myocytes (guinea pig), 916 demonstration of A₁ and A₂ adenosine receptors, smooth muscle cells, 149

5-HT₄ receptors, hippocampal membranes (guinea pig), 408 inhibition of calcium rise by adenosine, platelet aggregation, thrombin, 870

regulation by GTP-binding proteins, non-steady state kinetic analysis, 535

serotonin receptor-mediated activation, neuroblastoma, 742 Adenylyl cyclase

muscarinic receptor-mediated inhibition, reconstitution, 950 prevention of desensitization, *Pseudomonas* exotoxin A, heart muscle cells (rat), 631

Adrenal gland, angiotensin II receptor binding sites (rat), 347 Adrenal medulla, L-type calcium channel, dihydropyridine receptor, photoaffinity labeling, 173

Adrenoceptors

alpha-1

inositol phosphate formation, hepatocytes and renal cells, 903 subtypes, structural characterization, 526

alpha-2

idazoxan and methoxy derivative binding, human fat cells, 876 physical distinction, nonadrenergic idazoxan binding sites, 65 alpha-1 and beta-2, DNA synthesis, vascular smooth muscle cells (rat), 30

beta

agonistic effect, cyclic AMP generation, 44 sequestration, agonist-promoted activation, 775

beta-2, Pseudomonas exotoxin A, heart muscle cells (rat), 631

Aging, decreased efficacy of inositol 1,4,5-trisphosphate, calcium mobilization, cerebrocortical microsomes (rat), 566

Albumin

human serum

binding and co-binding of ligands, F-19 NMR, 111 drug binding, natural mutants, 238 valproate and palmitate binding, obesity, 704

Alkyl p-tolyl sulfides, stereoselective sulfoxidation, flavin-containing monooxygenases, 643

Allele, mutant, debrisoquin hydroxylase, family study, 639

Alprenolol, amplification of cyclic AMP generation, agonistic effects, β -adrenergic antagonists, 44

Amiloride analogs, phosphorylation of elongation factor-2, vascular endothelial cells (bovine), 827

Amino acids, single substitution, naturally occurring genetic variant, human thymidylate synthase, 515 γ -Aminobutyric acid

benzodiazepine receptor complex, chronic agonist exposure, allosteric uncoupling (chick), 37

-induced currents, inverse modulation by progesterone (chick), 597 D-2-Amino-5-phosphonopentanoate, differential modulation, associated glycine recognition site, 780

D-2-Amino-5-phosphonovalerate, activation by quisqualate, NMDA receptor channels, hippocampal neurons, 477

Anesthetics, steroid, GABA_A receptors, mechanism of interactions, 429 Aniline, -induced hemoglobin thiyl free radical formation, 311

Anthraquinone, -sensitized Ca²⁺ release channel, cardiac sarcoplasmic reticulum (rat), 503

Antibiotics, mitomycin reductive potential, related pharmacological activities, 966

Anticonvulsants, cyclopentanones and cyclohexanones (mouse), 98
Antipsychotics, pimozide, potent Ca²⁺ channel blocker, heart (rat), 752
Anxiolytic drugs, 5-HT_{1A}-mediated inhibition, serotonin synthesis, receptor reserve (rat), 231

Arachidonate, maitotoxin effects, calcium channels, PC-12 cells, 222
Arachidonic acid, muscarinic and histamine receptor-mediated activation, guanylate cyclase, Ca²⁺ mobilization in neuroblastoma cells, 860

2-Aryl-1,3-dithiolanes, enantioselective S-oxygenation, lung enzyme preparations (rabbit), 333

Aryl hydroxylase, localization and distribution, xenobiotic-activating enzymes, lung (rat), 182

Assays, mutagenicity, cytochrome P-450IA1 cDNA expression, V79 cells (rat), 608

Astrocytes, stimulation of glycogen breakdown by histamine, Ca²⁺ permeability (rat), 921

Astrocytoma, protein kinase C activators, cyclic AMP accumulation (human), 296

3'-Azido-3'-deoxythymidine, inhibition of DNA synthesis, deoxynucleotide changes, human lymphoid cells, 665

В

Barbiturates, GABA receptor regulation in culture, 710

Benzamide derivatives, 5-HT₄ receptors, adenylate cyclase, hippocampal membranes (guinea pig), 408

Benzene, hydroquinone, bioactivation and detoxification, bone marrow stromal cells (mouse), 255

Benzo(a)pyrene, inhibition of epidermal growth factor binding, receptor autophosphorylation, placental cell culture (human), 137

Benzodiazepines

binding site subtypes, discrimination, triakontate traneuropeptide α -helix, 164

GABA_A receptor regulation in culture, 710

Bile, novel type of ornithine-glutathione double conjugate, clebopride (rat), 983

Biliverdin reductase, variants, bromobenzene-mediated alteration, kidney (rat), 25

Biotin, fluorescent probes and, dopamine receptors, 833

BMY-14802, modulation of NMDA receptor-mediated events (mouse),

Bombesin, desensitization of islet cells, receptor down-modulation, inhibition of function, 758

Bone marrow, stromal cell bioactivation, detoxification, hydroquinone (mouse), 255

Bradykinin

B₂ receptors, Balb/c cell mRNA, occytes (*Xenopus*), 785 regulation of tyrosine hydroxylase activity, PC-12 cells, 104

Brain

cerebrocortical microsomes, calcium mobilization, inositol 1,4,5-trisphophate (rat), 566

c-fos mRNA, ethanol withdrawal seizures (mouse), 367

5-HT_{1A}-mediated inhibition, serotonin synthesis, receptor reserve (rat), 231

NMDA receptors, multiple molecules of agonist for activation (rat), 603

opioid receptors, dermophin interaction (rat), 886

solubilization, active somatostatin receptors (rat), 614

specific binding sites, inositolhexakisphosphate (rat), 689

sulfhydryl alkylating derivatives, morphine and morphinene, μ opioid receptors (rat), 50

Bromobenzene, -mediated alteration in activity, biliverdin reductase variants, kidney (rat), 25

 α -Bungarotoxin, nicotinic site regulation, thymopoietin, chromaffin cells, 90

Buspirone, 5-HT_{1A}-mediated inhibition, serotonin synthesis, receptor reserve (rat), 231

tert-Butylbicyclophosphorothionate, electrophysiological study, induced block, spontaneous chloride channels, 578

tert-Butyl hydroperoxide, killing of hepatocytes, autophagic degradation of protein, ferric iron pool, 435

 \mathbf{C}

Calcium

-activated Cl⁻ channels, reversible blockers, niflumic and flufenamic acids (*Xenopus* oocytes), 720

cytoplasmic, sulfonylurea-induced oscillations, pancreatic β -cells (mouse), 461

inhibition of rise by adenosine, platelet aggregation, thrombin, 870 mobilization

activation of guanylate cyclase, neuroblastoma cells, 860

inositol 1,4,5-trisphosphate, cerebrocortical microsomes (rat), 566 permeability, glycogen breakdown stimulated by histamine, astrocytes (rat), 921

release channel, skeletal muscle sarcoplasmic reticulum, ryanodine as probe, 735

Calcium channel

anthraquinone-sensitized release, cardiac sarcoplasmic reticulum (rat), 503

blocker, antipsychotic pimozide, heart (rat), 752

inorganic blockers, dihydropyridine binding, cardiac sarcolemma (dog, rat), 80

L-type, dihydropyridine receptor, adrenal medulla, 173 maitotoxin effects, signal transduction, PC-12 cells, 222

Calcium current, components in nodose ganglion neurons, regulation, GTP and stable thiol derivatives (rat), 546

Calmodulin, translocation in neuroblastoma cells, muscarinic receptor, 820

Carbocyclic 5-iodo-2'-deoxyuridine, carbocyclic (E)-5-(2-bromovinyl)-2'-deoxyuridine and, chiral molecules, thymidine kinase of HSV-1 (rabbit), 395

Carbon tetrachloride, free radical metabolite, reaction with glutathione, 443

Cardiomyopathy, doxorubicin, anthraquinone-sensitized Ca²⁺ release channel (rat), 503

CCRF-CEM cells, inhibition of DNA synthesis, 3'-azido-3'-deoxythymidine, deoxynucleotide changes, 665

Cerebellum, cyclic GMP, BMY-14802, modulation of NMDA receptormediated events (mouse), 978

Cerebral cortex, phosphoinositide metabolism, multiple muscarinic receptor subtypes (rat), 893

Chemotherapy, antitumor and antimitochondrial properties, gossypol enantiomers, 840

Chloride channels

Ca²⁺-activated, potent reversible blockers, niflumic and flufenamic acids (*Xenopus* oocytes), 720

GABA receptor and steroid interactions, 263

multiple distinct subunits, GABA-A receptor protein, ligand-binding affinities, 497

spontaneous, electrophysiology, tert-butylbicylcophosphorothionate, 578

Chloride currents, γ-aminobutyric acid- and glycine-induced, inverse modulation by progesterone (chick), 597

5-(2-Chloroethyl)-2'-deoxyuridine, mechanism of action, 658

Chromaffin cells, regulation of nicotinic α -bungarotoxin sites, thymopoietin, 90

Clebopride, novel type of ornithine-glutathione double conjugate, excretion in bile (rat), 983

Computer

-automated structure evaluation, gastric antiulcer compounds, 958 modeling of benzodiazepine receptor binding site, REMOTEDISC, 725

simulation, netropsin binding to DNA molecules, 341

Cyanopindolol, amplification of cyclic AMP generation, agonistic effects, β -adrenergic antagonists, 44

Cyclic AMP, see Adenosine monophosphate, cyclic

Cyclic AMP phosphodiesterase, rat homologs of *Drosophila dunce* gene code, sensitivity, rolipram and RO 20-1724, 7

Cyclic GMP, see Guanosine monophosphate, cyclic

Cyclooxygenase, lipoxygenase pathway inhibitors, inositol phosphate formation, pancreatic islets, 928

Cyclopentanones, convulsant and anticonvulsant, cyclohexanones (mouse), 98

Cysteine, conjugate toxicity and metabolism, binding to macromolecules, kidney mitochondria (rat), 468

Cytochrome P-450

isozymes, 4-alkyl analogues, 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (rat), 130

multiple forms, immunochemical characterization, nasal microsomes (rabbit), 489

reactive metabolites, phenacetin activation, 452

Cytochrome P-450c, α -naphthoflavone metabolism, liver microsomes (rat), 990

Cytochrome P450IA1

glucocorticoid regulation of induction, polycyclic aromatic hydrocarbon, hepatocytes, 198

stable expression of cDNA in V79 Chinese hamster cells, use, mutagenicity testing (rat), 608

Cytochrome P450IIB, gene expression in small intestine (rat), 810

Cytochrome P450IIIA, enzymes in liver microsomes, diazepam and nordazepam C₃-hydroxylation (rat), 767

D

Debrisoquin hydroxylase, identification of mutant allele, family study, 639

Dermophin, interaction with brain opioid receptors (rat), 886

Diabetes, hepatic microsomal P450 expression, testosterone and growth hormone treatment (rat), 119

Diacylglycerol, phorbol and, molecular geometry, protein kinase C activation, 286

Diazepam

nordazepam and, C₃-hydroxylation, cytochrome P450IIIA enzymes in liver microsomes (rat), 767

triakontatetraneuropeptide, α -helix, benzodiazepine binding site subtypes, 164

warfarin and salicylate, binding, serum albumin variants (human),

2',3'-Dideoxyadenosine, properties of stable analogue, 2'-fluoro-2',3'dideoxyarabinosyladenosine, 590

- 2',3'-Dideoxyribonucleosides, cytostatic effects, transformed hemopoietic cell lines (human), 328
- 2',3'-Dideoxyuridine-5'-triphosphate, inhibition of HIV reverse transcriptase, DNA chain termination, 157
- 3,5-Diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine, 4-alkyl analogues, P-450 isozymes (rat), 130
- Dihydrolipoate, reaction of ebselen with endogenous thiols, better cofactor than glutathione, 412
- Dihydropyridine, binding to cardiac sarcolemma, effect, inorganic calcium channel blockers (dog, rat), 80

DNA

- chain termination activity, inhibition of HIV reverse transcriptase, 2',3'-dideoxyuridine-5'-triphosphate, 157
- complementary, stable expression of cytochrome P-450IA1, V79 Chinese hamster cells, mutagenicity testing (rat), 608
- HSV-1-infected, (E)-5-(2-iodovinyl)-2'-deoxyuridine, 402 inhibition of synthesis
- adrenergic receptors, vascular smooth muscle (rat), 30 3'-azido-3'-deoxythymidine, human lymphoid cells, 665 molecules, netropsin binding, computer simulation, 341

DNA topoisomerase

- dependent mechanisms of multidrug resistance, P388 leukemia cells, 11
- interaction with 3-nitrobenzothiazolo(3,4-a)quinolinium, 377 Dopamine
 - agonist-induced elevation, striatal acetylcholine (rat), 560
 - regulation of prolactin gene transcription, estrogen, pimozide and α -ergocryptine (rat), 215
- Doxorubicin, cardiomyopathy, anthraquinone-sensitized Ca²⁺ release channel (rat), 503
- DPI 201-106, enantiomers, cardiac sodium channel, 17
- Drosophila dunce, rat homologs of gene code, cyclic AMP phosphodiesterases, rolipram and RO 20-1724, 7
- DT-diaphorase, inhibition by flavonoids, scutellariae radix (rat), 911 Dysidenin, inhibition of iodide transport, thyroid cells (dog), 583

E

- Ebselen, endogenous thiols and, better cofactor than glutathione, peroxidase activity, 412
- Electrophoresis, bromobenzene-mediated alteration, biliverdin reductase variants, kidney (rat), 25
- Electrophysiology, tert-butylbicyclophosphorothionate, induced block, spontaneous chloride channels, 578
- Elongation factor-2, induction of phosphorylation by amiloride analogs, vascular endothelial cells (bovine), 827
- Endorphin, sulfhydryl alkylating derivatives, μ opioid receptors, morphine and morphinone (rat), 50
- Endothelial cells, vascular, phosphorylation of elongation factor-2, amiloride analogs, 827
- Epidermal growth factor, inhibition of binding by benzo(a)pyrene, receptor autophosphorylation, placental cell culture (human), 137
- Epinephrine, low concentrations, cAMP-dependent protein kinase responses, S49 cells, 937
- α-Ergocryptine, regulation of prolactin gene transcription, estrogen, pimozide (rat), 215

Estrogen

- enantioselective S-oxygenation, para-methoxyphenyl-1,3-dithiolane, tissue preparations, 319
- regulation of prolactin gene transcription, pimozide, α -ergocryptine (rat). 215
- Ethanol, withdrawal seizures, c-fos mRNA, brain (mouse), 367

K

- Fat cells, human, binding, idazoxan and methoxy derivative, 876 Fatty acids
 - cyclooxygenase and lipoxygenase pathway inhibitors, modulation, inositol phosphate formation in pancreatic islets, 928

- valproate and palmitate binding, human serum albumin, obesity, 704 Fibroblastoid cells, bone marrow stromal cell bioactivation, detoxification, hydroquinone (mouse), 255
- Flavin, -containing monooxygenases, stereoselective sulfoxidation, alkyl p-tolyl sulfides, 643
- Flavonoids, inhibition of liver NAD(P)H:quinone acceptor oxidoreductase, scutellariae radix (rat), 911
- Flufenamic acid, reversible blocker of Ca²⁺-activated Cl⁻ channels (*Xenopus* oocytes), 720
- Flunitrazepam, allosteric uncoupling, γ -aminobutyric acid/benzodiazepine receptor complex (chick), 37
- 2'-Fluoro-2',3'-dideoxyarabinosyladenine, properties, 590
- 5-Fluoroindole-2-carboxylic acid, activation by quisqualate, NMDA receptor channels, hippocampal neurons, 477
- Fluorophor, fluorescent and biotin probes, dopamine receptors, 833
- Flurbiprofen, detection of site-specific binding and co-binding, ligands, human serum albumin, 111

Forskolin

- amplification of cyclic AMP generation, agonistic effects, β -adrenergic antagonists, 44
- irreversible loss of binding sites, α -haloacetyl analogs, platelets (human), 69
- Free radical, formation, hemoglobin thiyl, 311
- β -Funaltrexamine, kinetics of binding, μ opioid receptor, 243

G

- Genes, encoding for a variant P-glycoprotein, multidrug resistance, glutathione S-transferase-π, 801
- Genistein, platelet-activating factor stimulation, tyrosine kinase, phospholipase C relationship (rabbit), 519
- Glucocorticoid, regulation of induction, polycyclic aromatic hydrocarbon, hepatocytes, 198
- Glucose, mimicry of effect by sulfonylurea, cytoplasmic calcium oscillation, pancreatic β -cells (mouse), 461

Glutathione

- ebselen and endogenous thiols, peroxidase activity, 412
- -ornithine double conjugate, excretion in bile, clebopride (rat), 983 reaction with a free radical metabolite, carbon tetrachloride, 443
- -related enzymes, multidrug resistance, small cell lung cancer, 192
- Glutathione S-transferase, subunits 1-2 and 7, mRNA coding changes, hepatocytes (rat), 372
- Glutathione S-transferase- π , transfection of genes for P-glycoprotein, 801
- Glutathione transferases, classes alpha, mu, and pi, inactivation of acrolein, 251
- Glutatmate dehydrogenase, regulation by Mg²⁺, magnification of leucine activation, 943

Glycine

- differential modulation of recognition site, competitive NMDA receptor antagonists, 780
- -induce currents, inverse modulation by progesterone (chick), 597
- Glycogen, breakdown stimulated by histamine, Ca²⁺ permeability, astrocytes (rat), 921
- Gossypol, enantiomers, antitumor and antimitochondrial properties, $840\,$

G protein

- agonist-promoted activation, sequestration, β -adrenergic receptor, 775
- allosteric antagonists of receptor interactions, 304
- muscarinic receptor-mediated inhibition, adenylyl cyclase, reconstitution, 950
- post soluble binding, leukotriene D_4 receptor, lung membranes (guinea pig), 60
- Growth hormone, testosterone and, hepatic microsomal P450 expression, diabetes (rat), 119
- GTP, stable thiol derivatives and, calcium current components, nodose ganglion neurons (rat), 546

GTP-binding proteins

opioid receptors, spontaneous association, native membranes, 383 regulation of adenylate cyclase, non-steady state kinetic analysis, 535

Guanine nucleotide-binding protein

immunological characterization, monoclonal antibody, γ subunit of transducin, 797

partial agonist effects, atrial muscarinic receptor, reconstituted system, 996

Guanosine monophosphate, cyclic

cerebellar, BMY-14802, modulation of NMDA receptor-mediated events (mouse), 978

inhibition of cyclic AMP breakdown, inhibited platelet function, nitrovasodilators and activators of adenylate cyclase, 671

Guanylate cyclase, muscarinic and histamine receptor-mediated activation, intracellular Ca²⁺ mobilization, 860

H

Heart

cardiac sarcolemma, dihydropyridine binding, calcium channel blockers (dog, rat), 80

muscle cells, *Pseudomonas* exotoxin A, prevention of β -adrenoceptorinduced up-regulation (rat), 631

potent Ca²⁺ channel blocker, antipsychotic pimozide (rat), 752 sodium channel, interaction, DPI 201-106 enantiomers, 17 sodium channel blockers, size/solubility hypothesis, 855

Hemoglobin, thiyl free radical formation, 311

Hemopoietic cells, transformed, cytostatic effects, 2',3'-dideoxyribonucleosides (human), 328

Hepatocytes

 α_1 -adrenergic receptor subtypes, formation, inositol phosphates, 903 changes in glutathione S-transferase subunit mRNA expression (rat), 372

glucocorticoid regulation of induction, polycyclic aromatic hydrocarbon, 198

killing, autophagic degradation of protein, ferric iron pool, 435 Herpes simplex virus

inhibition of replication, 5-(2-chloroethyl)-2'-deoxyuridine, mechanism of action, 658

type 1

(E)-5-(2-iodovinyl)-2'-deoxyuridine, DNA incorporation, 402 thymidine kinase, cybocyclic 5-iodo-2'-deoxyuridine and enantiomers (rabbit), 395

Hippocampus

5-HT₄ receptors, adenylate cyclase (guinea pig), 408

neurons, activation by quisqualate, NMDA receptor channels, 477

Histamine, stimulation of glycogen breakdown, Ca^{2+} permeability, astrocytes (rat), 921

Human immunodeficiency virus, inhibition of reverse transcriptase, DNA chain termination, 2',3'-dideoxyuridine-5'-triphosphate, 157

Hydrocarbon, aromatic, polycyclic, glucocorticoid regulation of induction, hepatocytes, 198

Hydroquinone, bone marrow stromal cell bioactivation, detoxification (mouse), 255

Hydroxymethylarenes, polycyclic, formation of reactive sulfate esters, liver cytosolic hydroxysteroid sulfotransferase (rat), 848

Hydroxysteroid sulfotransferase, cytosolic, formation of reactive sulfate esters, liver (rat), 848

I

Idazoxan

binding, methoxy derivative, human fat cells, 876

nonadrenergic binding sites, physical distinction, α_2 -adrenergic receptors, 65

Imidazo[1,2-a]pyridines, -pyrazines and, computer-automated structure evaluation, gastric antiulcer compounds, 958 Inositol 1,4,5-trisphosphate, decreased efficacy to elicit calcium mobilization, cerebrocortical microsomes, aged rats, 566

Inositolhexakisphosphate, specific binding sites, brain and anterior pituitary (rat), 689

Inositol phosphate

formation in hepatocytes and renal cells, alpha-1 adrenoceptor subtypes, 903

formation in pancreatic islets, fatty acids, cyclooxygenase and lipoxygenase pathway inhibitors, 928

Intestine, small, P450IIB gene expression (rat), 810

Iodide, inhibition of transport in thyroid cells, dysidenin (dog), 583

(E)-5-(2-Iodovinyl)-2'-deoxyuridine, carbocyclic analogue and, incorporation into HSV-1-infected cell DNA, 402

Ion channels, multiple distinct subunits, GABA-A receptor protein, ligand-binding affinities, 497

Iron, ferric, autophagic degradation of protein, hepatocyte killing, 435 Islet cells, desensitization to bombesin, receptor down-modulation, inhibition of function, 758

K

Kidney

 α_1 -adrenergic receptor subtypes, formation, inositol phosphates, 903 biliverdin reductase variants, bromobenzene-mediated alteration, electrophoretic pattern (rat), 25

mitochondria, cysteine conjugate toxicity, binding to macromolecules (rat), 468

KT5926, myosin light chain kinase, 482

L

Leucine, activation, regulation of glutamate dehydrogenase, Mg²⁺, 943 Ligands

absence of, receptor coupling, 383

binding affinities, multiple distinct subunits, GABA_A receptor protein, 497

nonpeptide, angiotensin II receptor binding sites, adrenal (rat), 347 selective and nonselective binding, quantitative analysis, multiple κ -opioid receptors in spinal cord (guinea pig), 694

site-specific binding and co-binding, human serum albumin, F-19 NMR, 111

Lipoxygenase, inhibitors, inositol phosphate formation, pancreatic islets, 928

Liver

4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trime-thylpyridine (rat), 130

cytosolic hydroxysteroid sulfotransferase, formation of reactive sulfate esters, carcinogenic polycyclic hydroxymethylarenes (rat), 848

inhibition of NAD(P)H:quinone acceptor oxidoreductase, flavonoids, scutellariae radix (rat), 911

Liver microsomes

cytochrome P450IIIA enzymes, diazepam and nordazepam C₃-hydroxylation (rat). 767

α-naphthoflavone metabolism, cytochrome P-450c (rat), 990

P450 expression, testosterone and growth hormone, diabetes (rat), 119

Lung

enzyme preparations, enantioselective S-oxygenation, 2-aryl-1,3-dithiolanes (rabbit), 333

membranes, post soluble binding, leukotriene D₄ receptor (guinea pig), 60

small cell lung cancer cell line, glutathione-related enzymes, multidrug resistance, 192

xenobiotic-activating enzymes, localization and distribution, aryl hydroxylase (rat), 182

Lymphoid cells, inhibition of DNA synthesis, 3'-azido-3'-deoxythymidine, deoxynucleotide changes, 665

M

Macromolecules, cysteine conjugate toxicity, kidney mitochondria (rat), 468

Macrophages, bone marrow stromal cell bioactivation, detoxification, hydroguinone (mouse), 255

Magnesium, regulation of glutamate dehydrogenase, magnification of leucine activation, 943

Maitotoxin, calcium channel effects, signal transduction, PC-12 cells, 222

para-Methoxyphenyl-1,3-dithiolane, enantioselective S-oxygenation, estradiol effect, tissue preparations, 319

N-Methyl-D-aspartate

quisqualate/DL-α-amino-3-hydroxy-5-methylisoxazole-4-propi onic acid receptors, phospholipase C treatment (rat), 278

receptors requiring multiple molecules of agonist, activation, brain (rat), 603

Methylxanthines, GABA_A receptor regulation in culture, 710 Microsomes

cerebrocortical, inositol 1,4,5-trisphophate, decreased calcium mobilization (rat), 566

liver, see Liver microsomes

nasal, immunochemical characterization, multiple forms of cytochrome P-450 (rabbit), 489

stereoselective sulfoxidation of alkyl p-tolyl sulfides, flavin-containing monooxygenases, 643

Mitochondria

antitumor and antimitochondrial properties, gossypol enantiomers, 840

kidney, cysteine conjugate toxicity, binding to macromolecules (rat), 468

Mitomycin, antibiotic reductive potential, related pharmacological activities. 966

Monoamine oxidase-A, binding of Ro 41-1049, 358

Monoclonal antibodies

immunological characterization, guanine nucleotide-binding protein, γ subunit of transducin, 797

platelet-activating factor stimulation, tyrosine kinase, phospholipase C relationship (rabbit), 519

Monooxygenases, flavin-containing, stereoselective sulfoxidation, alkyl p-tolyl sulfides, 643

Morphine, morphinone and, sulfhydryl alkylating derivatives, μ opioid receptors (rat). 50

Mucosa, nasal microsomes, immunochemical characterization, multiple forms of cytochrome P-450 (rabbit), 489

Multidrug resistance

cells transfected with human genes, variant P-glycoprotein, glutathione S-transferase- π , 801

DNA topoisomerase II-dependent mechanisms, P388 leukemia cells, 11

glutathione-related enzymes, small cell lung cancer, 192

tumor cell lines, P-glycoprotein-independent mechanism of resistance, 790

Muscle, skeletal, sarcoplasmic reticulum calcium release channel, ryanodine as probe, 735

Muscle, smooth

demonstration, A₁ and A₂ adenosine receptors, 149

tracheal, selective inhibition, cyclic nucleotide phosphodiesterase isozymes (dog), 206

vascular, adrenergic receptors, DNA synthesis (rat), 30

Mutagenesis, allosteric antagonists, receptor-G protein interactions, 304

Mutagenicity, stable expression of cytochrome P-450IA1 cDNA, V79 Chinese hamster cells (rat), 608

Myocytes

atrial, adenylate cyclase-coupled adenosine receptor (guinea pig), 916 inorganic calcium channel blockers, dihydropyridine binding, cardiac sarcolemma (dog, rat), 80

sodium channel comodification, full activator, veratridine reaction dynamics (rat), 144

Myosin, light chain kinase, KT5926, 482

N

NAD(P)H:quinone acceptor oxidoreductase, inhibition by flavonoids, scutellariae radix (rat), 911

NAD(P)H:quinone oxidoreductase, glucocorticoid regulation of induction, polycyclic aromatic hydrocarbon, hepatocytes, 198

 α -Naphthoflavone, metabolism by liver microsomes, cytochrome P-450c (rat), 990

Netropsin, binding to DNA molecules, computer simulation, 341 Neuroblastoma

muscarinic and histamine receptor-mediated activation, guanylate cyclase, Ca²⁺ mobilization, 860

muscarinic receptor-mediated translocation, calmodulin, 820 serotonin receptor-mediated activation, adenylate cyclase, 742

Neurons, nodose ganglion, calcium current components, regulation by GTP and thiol derivatives (rat), 546

Niflumic acid, reversible blocker of Ca²⁺-activated Cl⁻ channels (*Xenopus* oocytes), 720

3-Nitrobenzothiazolo(3,2-a)quinolinium, interaction with DNA topoisomerases, 377

Nitrosobenzene, -induced hemoglobin thiyl free radical formation, 311 Nitrovasodilators, activators of adenylate cyclase and, synergistic inhibition, platelet function, 671

Nordazepam, diazepam and, C₃-hydroxylation, cytochrome P450IIIA enzymes in liver microsomes (rat), 767

Nuclear magnetic resonance, detection of site-specific binding and cobinding, ligands, human serum albumin, 111

0

Obesity, valproate and palmitate binding, human serum albumin, 704 Olfaction, nasal microsomes, immunochemical characterization, multiple forms of cytochrome P-450 (rabbit), 489

Oocytes

Xenopus

 B_2 bradykinin receptor expression, Balb/c cell mRNA, 785 functional acetylcholine receptors, 423 $\,$

reversible blockers of chloride channels, niflumic and flufenamic acids. 720

Ornithine, -glutathione double conjugate, excretion in bile, clebopride (rat), 983

Oxygen

enantioselective S-oxygenation

2-aryl-1,3-dithiolanes, lung enzyme preparations (rabbit), 333 para-methoxyphenyl-1,3-dithiolane, estrogen effect, 319

killing of hepatocytes, autophagic degradation of protein, ferric iron pool, 435

P

Palmitate, valproate binding and, obesity, human serum albumin, 704 Pancreas

 β -cells, sulfonylurea-induced oscillations, cytoplasmic calcium (mouse), 461

desensitization of islet cells to bombesin, receptor down-modulation, inhibition of function, 758

modulation of inositol phosphate formation, fatty acids, cyclooxygenase and lipoxygenase pathway inhibitors, 928

PC-12 cells

maitotoxin effects, calcium channels, signal transduction, 222 regulation of tyrosine hydroxylase activity, bradykinin, 104

Peptide analogs, binding to vascular receptors, vasoactive intestinal peptide, 971

Peroxidase, activity, ebselen and endogenous thiols, dihydrolipoate, 412

P-glycoprotein

-independent mechanism of resistance to VP-16, multidrug-resistant tumor cell lines, 790

variant, multidrug resistance in cells, transfection with human genes, 801

Phenacetin, mechanisms of activation, reactive metabolites, cytochrome P-450, 452

Phencyclidine, binding site of NMDA receptor complex, structural determinants of affinity, 352

Phenylhydroxylamine, -induced hemoglobin thiyl free radical formation, 311

Phorbol, diacylglycerol and, molecular geometry, protein kinase C activation, 286

Phosphodiesterase isozymes, cyclic nucleotide, selective inhibition, tracheal smooth muscle (dog), 206

Phosphoinositide

breakdown, maitotoxin effects, PC-12 cells, 222

hydrolysis, serotonin-2 receptors, clonal cell line, 622

metabolism in cerebral cortex, multiple muscarinic receptor subtypes (rat), 893

Phospholipase C

glutamate receptors, brain membranes (rat), 278

platelet-activating factor stimulation, tyrosine kinase, platelets (rabbit), 519

Photoaffinity labeling, P-glycoprotein-independent mechanism of resistance, VP-16, multidrug-resistant tumor cell lines, 790

Pilocarpine, interaction between atrial muscarinic receptor, inhibitory guanine nucleotide-binding protein, reconstituted system, 996

Pimozide

Ca²⁺ channel blocker in heart (rat), 752

regulation of prolactin gene transcription, estrogen, α -ergocryptine (rat), 215

Pituitary

anterior, specific binding sites, inositolhexakisphosphate (rat), 689 regulation of prolactin gene transcription, estrogen, pimozide and α -ergocryptine (rat), 215

Placenta

adenosine receptors, partial separation, adenosine A_2 -like binding protein, 554

inhibition of epidermal growth factor binding, benzo(a)pyrene, receptor autophosphorylation (human), 137

Platelet-activating factor, stimulation of tyrosine kinase, phospholipase C, platelets (rabbit), 519

Platelets

aggregation, inhibition of calcium rise, adenosine, 870

effect of activation on agglutination, von Willebrand factor, 271

irreversible loss of forskolin binding sites, α -haloacetyl analogs (human), 69

myosin light chain kinase, KT5926, 482

placental adenosine receptors and, partial separation, adenosine A₂like binding protein, 554

synergistic inhibition of function, nitrovasodilators, activators of adenylate cyclase, 671

P388 leukemia cells, multidrug resistance, DNA topoisomerase II mechanisms, 11

Polyamines, N-(1-[thienyl]cyclohexyl)piperidine binding, NMDA receptor ionophore complex, 572

Polymerase chain reaction, P450IIB gene expression, small intestine (rat), 810

Probes, fluorescent and biotin, dopamine receptors, 833

Progesterone, inverse modulation, γ -aminobutyric acid- and glycineinduced currents (chick), 597

Prolactin, regulation of gene transcription, pimozide, estrogen and α ergocryptine (rat), 215

Protein, autophagic degradation, ferric iron pool, hepatocyte killing,

Protein kinase, cAMP-dependent reponses, growth in low epinephrine concentrations, S49 cells, 937

Protein kinase C

activators, cyclic AMP accumulation, astrocytoma cells (human), 296

myosin light chain kinase, KT5926, 482

requirements for activation, molecular geometry, phorbol and diacylglycerol, 286

translocation, central 5-hydroxytryptamine receptor linkage (rat), 75
Proto-oncogenes, c-fos mRNA, ethanol withdrawal seizures, brain
(mouse), 367

Pseudomonas exotoxin A, prevention of β -adrenoceptor-induced upregulation, G_1 protein α -subunits, heart muscle cells (rat), 631

Pyridine nucleotide cofactors, biliverdin reductase variants in kidney, bromobenzene-mediated alteration, electrophoretic pattern (rat), 25

Q

Quisqualate

activation of NMDA receptor channels, hippocampal neurons, 477 $DL-\alpha$ -amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, NMDA, phospholipase C treatment (rat), 278

R

Receptors

acetylcholine, Xenopus oocytes, 423

adenosine

adenylate cyclase coupling, atrial myocytes (guinea pig), 916 platelet and placental, separation from adenosine A_2 -like binding protein, 554

adenosine A₁ and A₂, smooth muscle cells, 149

angiotensin II, binding sites, adrenal (rat), 347

anthraquinone-sensitized Ca²⁺ release channel, cardiac sarcoplasmic reticulum (rat), 503

autophosphorylation, EGF binding inhibition by benzo(a)pyrene, placental cell culture (human), 137

B₂ bradykinin, Balb/c mRNA, oocytes (Xenopus), 785

benzodiazepine, modeling of binding site, REMOTEDISC, 725 dihydropyridine, L-type calcium channel, adrenal medulla, 173

dopamine D₁ and D₂, fluorescent and biotin probes, 833

dopamine D₂, molecular cloning, human retina (rat), 1

GABA, chloride ion channels, steroid interactions, 263 $GABA_A$

anesthetic steroids, mechanism of interactions, 429 multiple distinct subunits, ligand-binding affinities, 497 regulation in culture, 710

GABA, subunits, differential expression, 652

GABA/benzodiazepine receptor complex, chronic agonist exposure, allosteric uncoupling (chick), 37

glutamate, phospholipase C treatment, brain membranes (rat), 278 G-protein, allosteric antagonists, 304

guanine nucleotide-binding protein, immunological characterization, 797

5-HT₄, adenylate cyclase, hippocampal membranes (guinea pig), 408 5-hydroxytryptamine, protein kinase C translocation (rat), 75

leukotriene D_4 , post soluble binding, lung membranes (guinea pig), 60

M₂-muscarinic agonist-receptor interactions, sialic acid residues, catalysts. 682

muscarinic

inhibition of adenylyl cyclase, reconstitution, 950

inhibitory guanine nucleotide-binding protein, reconstituted system, 996

multiple subtypes, phosphoinositide metabolism in cerebral cortex (rat), 893

translocation of calmodulin, neuroblastoma cells, 820

muscarinic and histamine, guanylate cyclase activation, Ca²⁺ mobilization, 860

Receptors—continued

NMDA

activation by quisqualate, hippocampal neurons, 477 antagonists, modulation of glycine recognition site, 780 BMY-14802, cerebellar cyclic GMP (mouse), 978 multiple molecules of agonist for activation, brain (rat), 603 phencyclidine binding site, structural determinants, 352 polyamines, N-(1-[thienyl]cyclohexyl)piperidine binding, 572 highest

dermophin interaction, brain (rat), 886

GTP-binding regulatory proteins, spontaneous association, 383 opioid kappa, quantitative analysis, spinal cord (guinea pig), 694 opioid μ

kinetics, β -funaltrexamine binding, 243

sulfhydryl alkylating derivatives, morphine and morphinone (rat), 50

reserve, 5-HT_{1A}-mediated inhibition, serotonin synthesis (rat), 231 serotonin, adenylate cyclase activation, neuroblastoma, 742 serotonin-2, coupled to phosphoinositide hydrolysis, clonal cell line,

somatostatin, solubilization, brain (rat), 614

striatal acetylcholine, dopamine agonist-induced elevation (rat), 560 vascular, binding of peptide analogs, vasoactive intestinal peptide, 971

Renal cells, α_1 -adrenergic receptor subtypes, formation, inositol phosphates, 903

Restriction fragments, XbaI, mutant allele for debrisoquin hydroxylase, family study, 639

Retina, human, dopamine D2 receptor, molecular cloning (rat), 1

RNA, regulation of prolactin gene transcription, estrogen, pimozide and α -ergocryptine (rat), 215

RNA, messenger

Balb/c, B_2 bradykinin receptors, oocytes (*Xenopus*), 785 c-fos, ethanol withdrawal seizures, brain (mouse), 367

changes in expression of coding, glutathione S-transferase subunits 1-2 and 7, hepatocytes (rat), 372

RO 20-1724

rat homologs of *Drosophila dunce* gene code, cyclic AMP phosphodiesterase, 7

selective inhibition of phosphodiesterase isozymes, tracheal smooth muscle (dog), 206

Ro 41-1049, binding to active site, human monoamine oxidase-A, 358 Rolipram

rat homologs of *Drosophila dunce* gene code, cyclic AMP phosphodiesterase. 7

selective inhibition of phosphodiesterase isozymes, tracheal smooth muscle (dog), 206

Ryanodine, probe for functional site, skeletal muscle sarcoplasmic reticulum calcium release channel, 735

S

Salicylate, warfarin and diazepam, binding, serum albumin variants (human), 238

Sarcoplasmic reticulum

calcium release channel, skeletal muscle, ryanodine as probe, 735 cardiac, anthraquinone-sensitized Ca²⁺ release channel (rat), 503

S49 cells, cAMP-dependent protein kinase responses, growth in low epinephrine concentrations, 937

Scutellariae radix, inhibition of liver NAD(P)H:quinone acceptor oxidoreductase, flavonoids (rat), 911

Seizures, ethanol withdrawal, c-fos mRNA, brain (mouse), 367 Serotonin

central 5-HT receptor-linked protein kinase C translocation (rat),

5-HT_{1A}-mediated inhibition of synthesis, receptor reserve (rat), 231 receptors, see Receptors

Sialic acid, residues, catalysts for M₂-muscarinic agonist-receptor interactions, 682

SK&F 94836, selective inhibition of phosphodiesterase isozymes, tracheal smooth muscle (dog), 206

Sodium channel

blockers, size/solubility hypothesis, 855

cardiac, interaction, DPI 201-106 enantiomers, 17

comodification with full activator, veratridine reaction dynamics

Sodium ions, spontaneous association, opioid receptors, GTP-binding regulatory proteins, 383

Spinal cord, quantitative analysis of multiple κ -opioid receptors, selective and nonselective ligand binding (guinea pig), 694

Steroids

anesthetic, γ-aminobutyric acid, receptors, mechanism of interactions. 429

interactions with GABA receptor-gated chloride ion channels, multiple recognition sites, 263

Striatum, acetylcholine, dopamine agonist-induced elevation (rat), 560 Stromal cells, bioactivation and detoxification, hydroquinone (mouse), 255

Sulfate esters, formation from carcinogenic polycyclic hydroxymethylarenes, liver cytosolic hydroxysteroid sulfotransferase (rat), 848 Sulfhydryl groups, alkylating derivatives of morphine and morphinone,

Sulfhydryl groups, alkylating derivatives of morphine and mor affinity labeling (rat), 50

Sulfonylurea, mimicry of glucose effect, cytoplasmic calcium oscillations, pancreatic β -cells (mouse), 461

Sulindac, detection of site-specific binding and co-binding, ligands, human serum albumin, 111

Т

Temazepam, diazepam and nordazepam C₃-hydroxylation, cytochrome P450IIIA enzymes, liver microsomes (rat), 767

Testosterone, growth hormone treatment and, hepatic microsomal P450 expression, diabetes (rat), 119

N-(1-[Thienyl]cyclohexyl)piperidine, binding to NMDA receptor ionophore complex, stimulatory and inhibitory effects, polyamines, 572

Thiols, ebselen and, better cofactor than glutathione, peroxidase activity, 412

Thrombin, inhibition of calcium rise, platelet aggregation, adenosine, 870

Thymidine kinase, herpes simplex virus type 1, carbocyclic 5-iodo-2'deoxyuridine, enantiomers (rabbit), 395

Thymidylate synthase, naturally occurring genetic variant, single amino acid substitution, 515

Thymopoietin, regulation of nicotinic α -bungarotoxin sites, chromaffin cells, 90

Thyroid, inhibition of iodide transport, dysidenin (dog), 583

Trachea, smooth muscle, selective inhibition, cyclic nucleotide phosphodiesterase isozymes (dog), 206

Transducin, γ subunit, immunological characterization, guanine nucleotide-binding protein, 797

Triakontatetraneuropeptide α -helix, discrimination, benzodiazepine binding site subtypes, 164

Tyrosine hydroxylase, regulation of activity by bradykinin, PC-12 cells,

Tyrosine kinase, platelet-activating factor stimulation, phospholipase C, platelets (rabbit), 519

U

Ulcer, gastric antiulcer compounds, computer-automated structure evaluation, 958

v

Valproate, palmitate binding and, obesity, human serum albumin, 704 Vasoactive intestinal peptide, binding of peptide analogs, vascular receptors, 971

V79 cells, stable expression of cytochrome P-450IA1 cDNA, use in mutagenicity testing (rat), 608

Veratridine, reaction dynamics, sodium channel comodification, full activator (rat), 144

von Willebrand factor, agglutination of platelets, effect, platelet activation, 271

VP-16, P-glycoprotein-independent mechanism of resistance, multidrug-resistant tumor cell lines, 790 V

Warfarin, salicylate and diazepam, binding, serum albumin variants (human), 238

X

Xenobiotic-activating enzymes, localization and distribution, aryl hydroxylase activity, lung (rat), 182

7

Zaprinast, selective inhibition of phosphodiesterase isozymes, tracheal smooth muscle (dog), 206

Copyright © 1990 by the American Society for Pharmacology and Experimental Therapeutics

INSTRUCTIONS TO AUTHORS

Molecular Pharmacology will publish the results of investigations that contribute significant new information on drug action or selective toxicity at the molecular level. The term "drug" is defined broadly to include chemicals that selectively modify biological function.

Suitable papers are those that describe applications of the methods of biochemistry, biophysics, genetics, and molecular biology to problems in pharmacology or toxicology. Also suitable are reports of fundamental investigations which, although not concerned directly with drugs, nevertheless provide an immediate basis for further study of the molecular mechanism of drug action. Observations of phenomena that shed no light upon underlying molecular interactions are not appropriate for publication. Comparative studies, such as those involving drug-receptor or drug-enzyme interactions that already have been well characterized in other types of cells or tissues, also are inappropriate for publication unless they contribute significant new insight into mechanisms.

Specific areas of interest include: identification and characterization of receptors for hormones, growth factors, neurotransmitters, toxins, and other drugs; analysis of receptor response pathways; drug effects on metabolic pathways, biosynthesis and degradation of macromolecules, and cellular regulatory mechanisms; analysis of drug-receptor and drug-enzyme interactions; effects of drugs on structure and properties of macromolecules and membranes; relationships between drug structure and activity; molecular mechanisms of drug metabolism; distribution and transport between biological compartments; molecular mechanisms of chemical mutagenesis, carcinogenesis, and teratogenesis; and molecular mechanisms of selective toxicity, drug allergy, and pharmacogenetics.

Page charges. Authors will be billed at the rate of \$30.00 per page after the paper has been published. It is expected that the page charge will be paid if funds are available for that purpose from the author's institution or from the sponsor of this research. Payment of the charge is not a condition for publication. In case of personal financial hardship, page charges will be waived. Neither the editors nor the reviewers will have knowledge as to who has paid the charge, and this payment always will be considered entirely voluntary.

Submission of manuscript. Manuscripts are published in English only and should be sent to Dr. William A. Catterall, Editor, Molecular Pharmacology, Department of Pharmacology, SJ-30, University of Washington, Seattle, Washington 98195, U. S. A.

The expenses associated with the review of manuscripts submitted to Molecular Pharmacology and other ASPET-sponsored journals that are devoted to publishing original research articles have escalated dramatically in recent years because of ever-increasing costs of postage, supplies, and other office expenses, and the growing number of manuscripts submitted for publication. Thus, it has become necessary for ASPET to follow the example of several other scientific societies which have instituted uniform manuscript handling fees. Therefore, all manuscripts must be accompanied either by a check for \$30 (in U. S. funds drawn on a U. S. bank payable to ASPET) or by a validated purchase order from the authors' institution. The review process for submitted manuscripts will be delayed until the manuscript handling fee or purchase order is received in the Editor's office. If submission of the manuscript handling fee entails a personal financial hardship to the author(s), the fee will be waived. In that event, the author(s) should submit a request for waiver of the fee when the manuscript is submitted.

Manuscripts should be typewritten double-spaced with ample margins on one side of the paper, $8\frac{1}{2} \times 11$ inches (ca. 215×280 mm). Submit four complete copies of the manuscript and four copies of each figure, plus one original drawing or photograph of each figure. Each half-tone figure requires four original drawings or photographs. All pages should be numbered consecutively beginning with the title page. Limit your reference listings to the minimal number required to document the manuscript adequately. In most instances 30 references or fewer should suffice.

Under usual circumstances reviewers will be instructed to return only their comments to the editorial office and to destroy manuscripts after a final decision on their acceptability has been made. Original drawings and single copies of manuscripts not accepted for publication will be returned to the authors upon request.

It is understood that the manuscripts and the results they contain will not have been published previously and are not being submitted elsewhere. If the submitted manuscript utilizes or makes bibliographic reference to articles in press, copies should be included with the manuscript. Manuscripts are accepted for review with the understanding that all persons listed as authors have given their approval for the submission of the paper; further, that any person cited as a source of personal communications has approved such citation. Written authorization may be required at the Editor's discretion. Articles and any other material published in *Molecular Pharmacology* represent the opinions of the author(s) and should not be construed to reflect the opinions of the Editor(s) and the Publisher. If and when a manuscript is published, it will become the sole property of the Journal.

Authors submitting a manuscript do so on the understanding that if it is accepted for publication, copyright in the article, including the right to reproduce the article in all forms and media, shall be assigned exclusively to the Society for Pharmacology and Experimental Therapeutics. No reasonable request by the author for permission to reproduce any of his or her contributions to the journal will be refused.

Accelerated Communications. In order to provide a mechanism for rapid publication of novel experimental findings of unusual and timely significance, manuscripts will be accepted for consideration as Accelerated Communications. Accelerated Communications are not intended for publication of preliminary results. Manuscripts submitted under this category should present novel results that are clearly documented and should make a conceptual advance in their field. They will be reviewed by the same criteria applied to regular papers in Molecular Pharmacology. The manuscript should be accompanied by a transmittal letter briefly outlining the significance of the work and providing a list of at least three scientists who would be appropriate reviewers.

Accelerated Communications will be reviewed as rapidly as possible with the aim of reaching an editorial decision within four weeks of receipt of the manuscript. It is expected that Accelerated Communications which are accepted will be published in essentially the form submitted. Manuscripts accepted without revision will be published within four to five months of initial receipt. Manuscripts accepted with a requirement for minor revisions will be published two or three months following receipt of a suitably revised version.

All manuscripts that require major revisions or that do not fit the criteria for Accelerated Communications will be returned to authors for revision and further consideration as a regular paper. Such manuscripts will retain the original submission date if revised versions are received in a timely manner.

Accelerated Communications may be submitted in the same style as regular manuscripts. Results and Discussion may be combined at the discretion of the authors. Manuscripts must not exceed five printed pages in the journal. This corresponds approximately to 25 double-spaced typewritten pages (1-inch margins) including all components of the manuscript and counting each figure as a page of typewritten text. Manuscripts that are judged to be too long will be considered as regular papers.

Organization and style of manuscripts. The policy of the Journal is to allow authors maximum freedom in organizing and presenting their material, and in expressing their ideas, provided only that clarity and conciseness are achieved. For most manuscripts, the most suitable format is: (1) Summary, (2) Introduction, (3) Materials and Methods, (4) Results, and (5) Discussion.

Certain conventions must be observed. Chemical and mathematical formulas and abbreviations should follow the Instructions to Authors of the Journal of Biological Chemistry (Vol. 261, pp. 1-11, January 10, 1986). Drugs must be referred to by their generic or chemical names throughout the text, but may be identified by trade name in parentheses or a footnote. The systematic name and number given by the Commission on Enzymes of the International Union of Biochemistry should be included for each enzyme of importance in a paper, at the point in the Summary or Introduction where the enzyme is first mentioned. The use of abbreviations should be minimized and abbreviations avoided in the Summary. All essential abbreviations should be defined in a single footnote when first introduced. Abbreviations of journal names should conform to the style of Biological Abstracts. References to papers that have been accepted for publication, but have not appeared, should be cited like other references with the abbreviated name of the journal followed by the words "in press." Copies of such papers should be sent whenever the findings described in them have a direct bearing on the paper being submitted for publication. "Personal Communications" and "Unpublished Observations" should be cited in footnotes to the text and should not be included in the reference list.

A manuscript should include the following, in the order listed: (1) Title. Numbered footnotes to the title should be avoided; acknowledgment of financial support should be given in an unnumbered footnote to the title. (2) Names of authors, their laboratory and institution. (3) A running title, not exceeding 60 characters and spaces. (4) Summary. (5) Text. Footnotes should be referred to by superscript numbers and references by numbers in parentheses. (6) References, numbered according to order of citation in the text,

including title and complete pagination. Examples: 1. Goren, J. H., L. G. Bauce, and W. Vale. Forces and structural limitations of binding of thyrotropin-releasing receptor: the pyroglutamic acid moiety. *Mol. Pharmacol.* 13:606-614 (1977). 2. Chernow, B., and J. T. O'Brian. Overview of catecholamines in selected endocrine systems, in *Norepinephrine* (M. G. Ziegler and C. R. Lake, eds.). Williams and Wilkins, Baltimore, 439-449 (1984). 3. Snedecor, G. W., and W. G. Cochran. *Statistical Methods*. Iowa State University Press, Ames (1967). (7) Footnotes, numbered according to order of appearance in the text. (8) Tables. (9) Figures. (10) Legends to figures. (11) Name and address of person to receive galley proof.

Tables. These should be numbered with arabic numerals and designed to fit the single-column width of the full-page width. Every table should have an explanatory title and sufficient experimental detail in a paragraph following the title to be intelligible without references to the text (unless the procedure is given in the Methods section, or under another table or figure). Footnotes to tables should appear beneath the tables themselves and should be designated by lower-case italic superscript letters, a, b, c, etc.

Figures. These should be numbered with arabic numerals. Each of the four manuscript copies should contain all of the figures. Only the original set need be of quality suitable for reproduction except in the case of half-tones, which require four sets of photographs or original drawings. These should be unmounted glossy photographs (or original India-ink drawings). Usually figures will be reduced to one column width (85 mm) and all numbers after such reduction should be at least 1.5 mm high. The figures must be ready, in all respects, for direct reproduction: no lettering or other art work will be done by the publisher. If symbols are not explained on the face of the figure, only standard characters, of which the printer has type, may be used $(\times, \bigcirc, \bullet, \square, \blacksquare, \triangle, \bullet, \bullet)$. The back of each photograph should bear its number, and the legend TOP at the appropriate edge. The list of legends for the figures should give captions and sufficient experimental detail, as required for tables.

Page proof. Authors will be billed for substantial changes in page proof. The Editors are very much interested in having accepted contributions appear in the earliest possible issue of the Journal, and therefore request that galley proof be returned within 24 hours after its receipt. In exceptional cases, a "Note added in proof" may be attached and will be published if the Editor approves.

Reprints and page charges. An order form for reprints as well as information on the estimation of page charges will be mailed with galley proof. Please direct questions on reprints, page charges, or other business matters to Kay Croker, Executive Officer, American Society for Pharmacology and Experimental Therapeutics, 9650 Rockville Pike, Bethesda, Md. 20814. Telephone (301)530-7060.

Newsworthy and timely articles in your field

MOLECULAR PHARMACOLOGY

Editor: William A. Catterall, PhD, University of Washington, Seattle, Washington

Is your special interest receptors and neurotransmitters...drug metabolism . . . antibiotic and anticancer drug actions . . . or other areas related to the molecular basis of drug action? If so, you should be subscribing to MOLECULAR PHARMACOLOGY.

The editor's and editorial board's high standards ensure that the papers you read in MOLECULAR PHARMACOLOGY are on the cutting edge of research on drug action and selective toxicity at the molecular level. Original applications of biochemistry, biophysics, genetics, and molecular biology are juxtaposed with innovative pharmacologic research to elucidate basic problems in pharmacology and toxicology, including such areas as molecular mechanisms involved in drug receptor-effector coupling, xenobiotic metabolism, and antibiotic and anticancer drug action. Start your subscription today to ensure access to the most newsworthy papers in your field. Monthly

Call toll-free to start your subscription immediately, **1-800-638-6423** from anywhere in the U.S. (In Maryland call 1-800-638-4007).

MOLECULAR PHARMACOLOGY
AN INTERNATIONAL JOURNAL

☐ American Express

ES! Enter my subscription:

Avoid future rate increases and ensure uninterrupted service—enter your multiyear subscription today!

Molecular Pharmacology (monthly)

☐ Individual: \$85/yr ☐ Institutions: \$185/yr (Please add \$25.00 outside the U.S.)
☐ New Subscription ☐ Renewal ☐ 3 yrs ☐ 2 yrs ☐ 1 yr

name

address

Williams & Wilkins

P.O. Box 23291 Baltimore, Maryland 21203-9990

Payment options:

☐ VISA

card # signature/P.O.#

Check enclosed

Broadway House 2-6 Fulham Broadway London SW6 1AA England

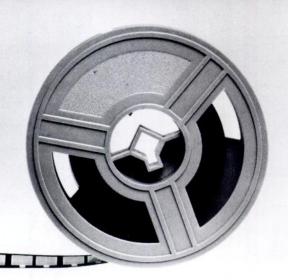
J0006S01

☐ Bill me

□ MasterCard

MD residents, please add 5% sales tax. Subscriptions from outside the US and Canada must be prepaid, in US dollars only: Rates valid for orders received before October 31, 1990.

Please allow 10 weeks for delivery of your first issue. Surface mail delivery to countries outside the US may take up to 16 weeks. Airmail rates available upon



city state zip

Need shelf space?

Williams & Wilkins is your source for back issues of this journal in microform.

Free Up 98% Of Your Shelf Space With Microform Conversion

MICROFILM editions are available for this journal direct from the publisher. Many Williams & Wilkins journals as well as those journals distributed by the Publishing Services Division of Waverly, Inc., are also available for a single volume year or on a standing order basis.

For ordering information: Write to the address below or call **TOLL FREE 1-800-638-6423.** In Maryland call **1-800-638-4007**.

for	
Journal Name	
Name	
Title	
Address	
City/State/Zip	

Mail to:

Williams & Wilkins

Microform Sales Attention: Yvonne Hahn 428 East Preston Street Baltimore, MD 21202

The Broadway Centre 2-6 Fulham Broadway London SW6 1AA England

Formats available:

- 16-mm reel
- 35-mm reel
- 16-mm cartridge (3M or Kodak)
- · positive or negative film-

MICA91 1192

Previous Editors

1965	Avram Goldstein, <i>Editor</i> . Stanford University.	
1968	Paul Talalay, Editor; Donald S. Coffey, Associate Editor. Johns Hopkins University.	
1971	Steven E. Mayer, Editor, Palmer W. Taylor, Associate Editor. University of	
	California at San Diego.	
1975	George I. Drummond, Editor; H. Joseph Goren, Associate Editor. University of	
	Calgary.	
1978	Norman Kirschner, Editor; Theodore A. Slotkin, Associate Editor. Duke University.	
1983	Joel G. Hardman, Editor; Lee Limbird, F. Peter Guengerich, Associate Editors.	
	Vanderbilt University.	

INFORMATION TO SUBSCRIBERS

MOLECULAR PHARMACOLOGY is published monthly, two volumes a year, beginning in January & July. Instructions to Authors will be found in every issue.

Correspondence concerning business matters should be addressed to Williams & Wilkins, 428 East Preston St., Baltimore, Maryland 21202-3993 U.S.A.

Catterall, Department of Pharmacology, SJ-30, University of Washington, Seattle, WA 98195.

Annual Subscription Rates—U. S. A. AND POSSESSIONS: personal, \$85.00; institutional, \$185.00, single copy, \$17.00. FOREIGN: personal, \$110.00; institutional, \$210.00; single copy, \$20.00. JAPAN: personal, \$151.00; institutional, \$251.00 (includes air freight). (Prices subject to change.) Institutional (multiple reader) rate applies to libraries, schools, hospitals, clinics, group practices, and federal, commercial, and private institutions and organizations. Foreign subscribers who wish to have issues sent by air mail may inquire of the publisher for the additional cost.

Japanese Yen price is available from our sole agent: USACO Corporation, 13-12 Shimbashi 1-Chome, Minato-Ku, Tokyo 105, Japan, telephone 03-502-6471.

Change of address: Publisher must be notified 60 days in advance. Journals undeliverable because of incorrect address will be destroyed. Duplicates can be obtained (if available) from the publisher at the regular price of single issues.

New subscriptions and renewals are entered to begin with the January or July issue.

To avoid a break in your series, subscriptions should be renewed promptly. The publisher cannot guarantee to supply back issues on belated renewals.

Reprints of individual articles are available only from authors.

Microfilm. For availability, inquire of Williams & Wilkins.

Williams & Wilkins, Baltimore, MD. 21202-3993 U. S. A.